Viết biểu thức dưới dạng tích:
8x\(^3\)+60x\(^2\)y+150xy\(^2\)+125y\(^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x^3+60x^2y+150xy^2+125y^3=\left(2x\right)^3+3.\left(2x\right)^2.5y+3.2x.\left(5y\right)^2+\left(5y\right)^3\)
\(=\left(2x+5y\right)^3\)
a: \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
c: \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)
\(\dfrac{1}{8}x^3-64=\left(\dfrac{1}{2}x-4\right)\left(\dfrac{1}{4}x^2+2x+16\right)\)
d: \(=\left(2x+5y\right)^3\)
\(8x^3+60x^2y+150xy^2+125y^3\)
\(=\left(8x^3+125y^3\right)+\left(60x^2y+150xy^2\right)\)
\(=\left(2x+5y\right)\left(4x^2-10xy+25y^2\right)+30xy\left(2x+5y\right)\)
\(=\left(2x+5y\right)\left(4x^2-10xy+25y^2+30xy\right)\)
\(=\left(2x+5y\right)\left(4x^2+20xy+25y^2\right)\)
\(=\left(2x+5y\right)\left(2x+5y\right)^2=\left(2x+5y\right)^3\)
C2 : Áp dụng luôn HĐT ( x + y ) 3
\(8x^3+60x^2y+150xy^2+125y^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.5y+3.2x.\left(5y\right)^2+\left(5y\right)^3\)
\(=\left(2x+5y\right)^2\)
=.= hok tốt!!
1.\(x^{16}-y^{16}=\left(x^8-y^8\right)\left(x^8+y^8\right)\)
2.\(x^3-125=x^3-5^3=\left(x-5\right)\left(x^2+5x+25\right)\)
\(-64+\frac{1}{8}x^3=\left(\frac{x}{2}\right)^3-4^3=\left(\frac{x}{2}-4\right)\left(\frac{x^2}{4}+2x+16\right)\)
\(8x^3+60x^2y+150xy^2+125y^3=\left(2x\right)^3+3.\left(2x\right)^2.\left(5y\right)+3.\left(2x\right).\left(5y\right)^2+\left(5y\right)^3\)
\(=\left(2x+5y\right)^3\)
a) Ta có : 64x2 - (8x + y)2
= (8x)2 - (8x + y)2
= (8x - 8x - y) (8x + 8x + y)
= -y(16x + y)
Bài 1:
a)\(64x^2-(8x+y)^2=-y\left(16x+y\right)\)
b)\((x+y+15)^2-2(x+y+15)+1\)
\(=\left(x+y+14\right)^2\)
c)\(8x^3+60x^2y+150xy^2+125y^3\)
\(=\left(2x+5y\right)^3\)
d)\(x^{16}-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
Bài 2:
\(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7+n+5\right)\left(n+7-\left(n+7\right)\right)\)
\(=24\left(n+1\right)\) chia hết 24
(2x+5y)^3