Tính giá trị biểu thức:
\(\left(1+\sqrt{1993}\right)\times\sqrt{1994-2\sqrt{1993}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\sqrt{\left(1993-x\right)^2}+\sqrt{\left(1994-x\right)^2}>0\)
ĐKXĐ: \(\sqrt{\left(1993-x\right)^2}\ge0,\sqrt{\left(1994-x\right)^2}\ge0\forall x\inℝ\)
\(M=|1993-x|+|1994-x|\)
Ta có: GTNN của \(\sqrt{\left(1993-x\right)^2}=0\left(\sqrt{\left(1993-x\right)^2}\ge0\right)\)
GTNN của \(\sqrt{\left(1994-x\right)^2}=0\left(\sqrt{\left(1994-x\right)^2}\ge0\right)\)
=> GTNN của \(M=|1993-1994|hay|1994-1993|=1\)
Ta có: M = \(\sqrt{\left(1993-x\right)^2}+\sqrt{\left(1994-x\right)^2}\)
\(\Leftrightarrow\)M = \(\left|1993-x\right|+\left|1994-x\right|\)
= \(\left|x-1993\right|+\left|1994-x\right|\)
\(\ge\left|x-1993+1994-x\right|\)\(=\left|1\right|\)= 1
\(\Rightarrow M\ge1\)
Dấu "=" xảy ra khi: \(\left(x-1993\right)\left(1994-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1993\ge0\\1994-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1993\\x\le1994\end{cases}}\)
\(\Leftrightarrow1993\le x\le1994\)
Vậy: min M = 1 \(\Leftrightarrow1993\le x\le1994\)
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\\ \Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{81-80}=18-3x\\ \Leftrightarrow x^3-3x=18\\ y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\\ \Leftrightarrow y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{9-8}=6+3y\\ \Leftrightarrow y^3-3y=6\\ \Leftrightarrow P=x^3+y^3-3\left(x+y\right)+1993\\ P=x^3+y^3-3x-3y+1993=18+6+1993=2017\)
Áp dụng: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(=18+3\sqrt[3]{81-80}.x=18+3x\)
\(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(\Rightarrow y^3=3-2\sqrt{2}+3+2\sqrt{2}+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{9-8}y=6+3y\)
\(P=x^3+y^3-3\left(x+y\right)+1993\)
\(=18+3x+6+3y-3x-3y+1993=2017\)
\(\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{1994+2.1993}=\sqrt{\left(1-\sqrt{1993}\right)^2}.\sqrt{\left(\sqrt{1993}+1\right)^2}=\left(\sqrt{1993}-1\right)\left(\sqrt{1993}+1\right)=1993-1=1992\)
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
\(x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot x\cdot1\)
=>x^3-3x-18=0
=>x=3
\(y^3=3+2\sqrt{2}+3-2\sqrt{2}+3y\)
=>y^3-3y-6=0
=>y=2,36
\(P=\left(x+y\right)^3-3xy\left(x+y\right)-3\left(x+y\right)+1993\)
\(=\left(3+2.36\right)^3-3\cdot3\cdot2.26\left(3+2.26\right)-3\left(3+2.36\right)+1993\)
=2023,922256
1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)
2: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
3: 2P=2*căn x+5
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-4=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>x=1/4
\(\left(1+\sqrt{1993}\right).\sqrt{1994-2\sqrt{1993}}\)
\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}\right)^2-2.\sqrt{1993}+1}\)
\(=\left(1+\sqrt{1993}\right).\sqrt{\left(\sqrt{1993}-1\right)^2}\)
\(=\left(1+\sqrt{1993}\right).\left(\sqrt{1993}-1\right)\)
\(=1992\)
ai tích mình mình tích lại cho