K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

lần sau đăng bài bạn nhớ đăng đúng đề nhé 
sửa đề: \(\left(a+b+c\right)^2+12=4\left(a+b+c\right)+2\left(ab+bc+ac\right) \)
=> \(a^2+b^2+c^2+2ab+2bc+2ac+12-4a-4b-4c-2ab-2bc-2ac=0\)
=> \(a^2+b^2+c^2-4a-4b-4c+12=0\)
=>\(\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)
=> a=b=c=2

11 tháng 7 2018

Cảm ơn bạn nhiều lắm nhá

24 tháng 7 2023

Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)

\(\Rightarrow x+y+z\ge0\)

\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)

=> Đẳng thức (1) luôn đúng với mọi x

Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)

và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Nguyễn Xuân Đình Lực:

mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:

Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$

Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$

Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$

AH
Akai Haruma
Giáo viên
27 tháng 6 2020

Lời giải:

Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.

BĐT cần chứng minh tương đương với:

$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$

$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$

Áp dụng BĐT Bunhiacopxky:

$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$

$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$

BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

27 tháng 6 2020

a,b,c>0 

\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)

9 tháng 7 2019

\(\left(a+b+c\right)^2+12=4\left(a+b+c\right)\)\(+2\left(ab+bc+ac\right)=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac+12-4\left(a+b+c\right)-2\left(ab+bc+ac\right)=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)-2\left(ab+bc+ac\right)-4\left(a+b+c\right)+12=0\)

\(\Rightarrow a^2+b^2+c^2-4a-4b-4c+12=0\)

\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)

Ta co: \(\left(a-2\right)^2\ge0\forall a\)

\(\left(b-2\right)^2\ge0\forall b\)

\(\left(c-2\right)^2\ge0\forall c\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}\Leftrightarrow}a=b=c=2}\left(\right)\)

(đpcm) 

Mình nghĩ thế này nhé bạn! 

(a + b + c )2 + 12 = 4 (a + b +c ) + 2(ab + bc +ac)

  \(\Leftrightarrow\)a2 + b2 + c2 + 2ab + 2bc + 2ac + 12 = 4a + 4b + 4c + 2ab + 2ac + 2bc

\(\Leftrightarrow\) a2 + b2 + c2 - 4a - 4b -4c +12 = 0

\(\Leftrightarrow\)a2 - 4a + 4 + b2 - 4b + 4 + c2 - 4c + 4 =0

\(\Leftrightarrow\)( a -2 )2 + (b-2)2 + (c-2)2 = 0

ta có (a-2 )2 \(\ge0\forall a\)

          (b - 2 )2 \(\ge0\forall b\)

            (c - 2 )2 \(\ge0\forall c\)

mà (a-2)2 + (b-2)2 + (c-2)2 = 0

\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\b=2\\c=2\end{cases}\left(đpcm\right)}\)

vậy................... khi a=b = c =2

#mã mã#

26 tháng 4 2020

\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)

Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P

26 tháng 4 2020

Theo BĐT AM-GM ta có:

\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)

\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)

Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)

\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)

Dấu "=" xảy ra <=> a=b=c

21 tháng 8 2015

phá tan nó ra ,chuyển vế, bấm nút li-ke choNgu Người

16 tháng 2 2021

giúp với