K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(A=-\left(x^2+2x+1\right)-14=-\left(x+1\right)^2-14< -14\)

\(=>MinA=-14\)dấu "=" xảy ra <=> x=-1

5 tháng 12 2019

Ta có: N = 2x – 2 x 2  – 5

      = - 2( x 2 – x + 5/2 )

      = - 2( x 2  – 2.x. 1/2 + 1/4 + 9/4 )

      = - 2[ x - 1 / 2 2  + 9/4 ]

      = - 2 x - 1 / 2 2  - 9/2

Vì  x - 1 / 2 2  ≥ 0 với mọi x nên - 2 x - 1 / 2 2  ≤ 0

Suy ra: N = - 2 x - 1 / 2 2  - 9/2 ≤ - 9/2

Vậy giá trị lớn nhất của biểu thức N là - 9/2 khi x- ½ = 0 hay x = 1/2 .

Ta có: \(A=-x^2-2x+15\)

\(=-\left(x^2+2x+1-16\right)\)

\(=-\left(x+1\right)^2+16\le16\forall x\)

Dấu '=' xảy ra khi x=-1

23 tháng 9 2018

Ta có: A = 4x –  x 2  + 3

              = 7 –  x 2  + 4x – 4

              = 7 – ( x 2 – 4x + 4)

      = 7 – x - 2 2

Vì  x - 2 2  ≥ 0 với mọi x nên A = 7 –  x - 2 2  ≤ 7

Vậy giá trị của A lớn nhất là 7 khi x – 2 = 0 hay x = 2

9 tháng 1 2017

Ta có: B = x –  x 2

              = 1/4 -  x 2  + x - 1/4

              = 1/4 - ( x 2 - 2.x. 1/2 + 1/4 )

              = 1/4 - x - 1 / 2 2

Vì  x - 1 / 2 2  ≥ 0 với mọi x nên B = 1/4 -  x - 1 / 2 2  ≤ 1/4

Vậy giá trị lớn nhất của B là 1/4 khi x- 1/2 = 0 hay x = 1/2 .

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$

1 tháng 7 2018

22 tháng 8 2019

a) x ≠ 0 ,    x ≠     − 2  

b) Ta có D = x 2  - 2x - 2.

c) Chú ý D = - x 2 - 2x - 2 = - ( x   +   1 ) 2  - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.

5 tháng 8 2018

Đặt  \(A=x^2-3x\)

\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{9}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy  \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)

Đặt  \(B=-x^2-2x\)

\(-B=x^2+2x\)

\(-B=\left(x^2+2x+1\right)-1\)

\(-B=\left(x+1\right)^2-1\)

Mà  \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(B_{Max}=1\Leftrightarrow x=-1\)