K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

a/ Gọi O là giao của AC và BD. Áp dụng t/c tổng chiều dài 2 cạnh của 1 tg bao giờ cũng lớn hơn chiều dài cạnh còn lại

OA+OB>AB

OB+OC>BC

OC+OD>CD

OD+OA>AD

Cộng 2 vế của 4 bất đẳng thức lại ta có

2(OA+OC)+2(OB+OD)>AB+BC+CD+AD

=> 2(AC+BD)>AB+BC+CD+AD

\(\Rightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)

b/ Ta có

AC<AB+BC

AC<CD+AD

BD<AB+AD

BD<BC+CD

Cộng từng vế 4 bất đẳng thức với nhau ta có

2(AC+BD)<2(AB+BC+CD+AD) => AC+BD<AB+BC+CD+AD

DD
23 tháng 6 2021

a) Gọi \(O\)là giao điểm \(AC\)và \(BD\)

Theo bất đẳng thức tam giác ta có: 

\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)

Cộng lại vế theo vế ta được: 

\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)

\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).

b) Theo bất đẳng thức tam giác: 

\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)

Cộng lại vế theo vế ta được:

\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).

13 tháng 9 2020

Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.

Bài 3:

a) Xét tam giác AOB: \(OB>AB-AO\)

Xét tam giác DOC: \(OD>DC-OC\)

Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)

b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:

\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)

Bài 4: 

a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:

\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)

b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà

Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:

\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)

Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)

Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)

1 tháng 9 2017

Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.

1 tháng 9 2017

Phùng Minh Quân bạn tự tin quá đó

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0