Cho\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-36x+81}với\frac{1}{2}\le x\le\frac{9}{2}.\)
Rút Gọn A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}=\left|3a^2\right|=3a^2\)
b) \(2\sqrt{a^2}-5a=2\left|a\right|-5a=-2a-5a=-7a\)
c) \(\sqrt{16\left(1+4x+4x^2\right)}=\sqrt{\left[4\left(1+2x\right)\right]^2}=\left|4\left(1+2x\right)\right|=4\left(1+2x\right)\)
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
\(\sqrt{4x^2+4x+1}\)
\(=\sqrt{\left(2x\right)^2+2.2x.1+1^2}\)
\(=\sqrt{\left(2x+1\right)^2}\)
\(=2x+1\)
Chúc bn học giỏi nhoa!!!
\(\sqrt{4x^2+4x+1}\)
\(=\sqrt{\left(2x\right)^2+2\cdot2x\cdot1+1^2}\)
\(=\sqrt{\left(2x+1\right)^2}\)
\(=2x+1\)
Cho biểu thức P = (4x−x21−4x2 1−x):(4x2−x41−4x2 +1)
a) Rút gọn P
= (x^21+4x^2-3x)/(x^41-1)
b) Tìm x để P =< 0
b) Tìm x để P ≤0
\(A=\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\)
\(A^2=\left(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\right)^2\)
\(A^2=2x-\sqrt{4x-1}+2x+\sqrt{4x-1}-2\sqrt{\left(2x-\sqrt{4x-1}\right)\left(2x+\sqrt{4x-1}\right)}\)
\(A^2=4x-2\sqrt{4x^2-4x+1}\)
\(A^2=4x-2\sqrt{\left(2x-1\right)^2}\)
\(A^2=4x-2\left|2x-1\right|\)
\(A^2=4x-2\left(1-2x\right)\) (vì\(\dfrac{1}{4}\le x\le\dfrac{1}{2}\)
\(A^2=8x-2\)
\(A=\sqrt{8x-2}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-36x+81}\)
\(=\sqrt{\left(2x\right)^2-2.2x.1+1^2}+\sqrt{\left(2x\right)^2-2.2x.9+9^2}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-9\right)^2}\)
\(=\left|2x-1\right|+\left|2x-9\right|\)
\(=2x-1+9-2x=8\)
Thanks bn♥