a) Cho hai điểm A, B thuộc cùng một nửa mặt phẳng có bờ là đường thẳng d (h.60). Gọi C là điểm đối xứng với A qua d. Gọi D là giao điểm của đường thẳng d và đoạn thẳng BC. Gọi E là điểm bất kì của đường thẳng d (E khác D).
Chứng minh rằng AD + DB < AE + EB.
b) Bạn Tú đang ở vị trí A, cần đến bờ sông d lấy nước rồi đi đến vị trí B (h.60). Con đường ngắn nhất mà bạn Tú nên di là con đường nào ?
h.60:
hình 60 đó cô ơi
a) Nối E với C
C đối xứng với A qua d => d là trung trực của AC
D; E thuộc d => EA = EC và DA = DC
ta có : AD + DB = DC + DB = CB
AE + EB = EC + EB
Trong tam giác BEC có: BC < EC + EB => AD + BD < AE + BE
b) Giả sử bạn Tú đến điểm E bất kì trên d
ta có: Quãng đường bạn cần đi là AE + EB
mà AE + EB = CE + EB
ta luôn có: CE + EB \(\ge\) CB
đê đi gần nhất thì CE + EB nhỏ nhất = CB
Dấu "=" xảy ra khi E trùng với D
vậy....