K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Ai giúp mk được mk cho 2 tk luôn!

17 tháng 7 2016

Xét \(C=3^{n+1}+4.2^{n-1}-81.3^{n-3}-8.2^{n-2}+1\)

\(=3^{n+1}+2^2.2^{n-1}-3^4.3^{n-3}-2^3.2^{n-2}+1\)

\(=3^{n+1}+2^{n+1}-3^{n+1}-2^{n+1}+1=1\)

Xét \(D=\left(2^n+1\right)^2+\left(2^n-1\right)^2-2\left(4^n+1\right)=2^{2n}+2.2^n+1+2^{2n}-2.2^n+1-2.4^n-2\)

\(=4^n+4^n-2.4^n=2.4^n-2.4^n=0\)

Vậy C > D

17 tháng 7 2016

bạn nói dùm mình chỗ từ =\(3^{n+1}+2^2.2^{n-1}-3^4.3^{n-3}-2^3.2^{n-2}+1\) 

                                      =\(3^{n+1}+2^{n+1}-3^{n+1}-2^{n+1}+1=1\) 

25 tháng 7 2017

a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)

\(=0\)

b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)

\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)

\(=0\)

11 tháng 7 2018

a,

\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)

b,

\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)

\(=-2^{n+1}+2^{n+1}=0\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

1.

\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$

2. 

\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)

\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

3.

\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)

4.

\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)

20 tháng 2 2018

b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)

=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)

=> \(2^n=2^6\)

Vậy \(n=6\left(tm\right)\)

20 tháng 2 2018

a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.