K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Gọi tứ giác là ABCD,O là giao điểm của 2 đường chéo

Xét t/g AOB có: OA+OB>AB

Xét t/g BOC có: OB+OC>BC

Xét t/g COD có: OC+OD>CD

Xét t/g AOD có: OA+OD>DA

Do đó: OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA

=>2(OA+OB+OC+OD)>AB+BC+CD+DA

=>AC+BD > \(\frac{AB+BC+CD+DA}{2}\) (1)

Xét t/g ABC có: AB+BC > AC

Xét t/g BDC có: BC+DC > BD

Xét t/g CDA có: CD+AD > AC

Xét t/g DAB có: DA+AB > BD

Do đó AB+BC+BC+CD+CD+AD+DA+AB > AC+BD+AC+BD

=>2(AB+BC+CD+DA) > 2(AC+BD)

=>AB+BC+CD+DA > AC+BD (2)

Từ (1) và (2) => đpcm

16 tháng 8 2018

Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD. 
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có: 
AB < OA + OB (1) 
BC < OB + OC (2) 
CD < OC + OD (3) 
DA < OD + OA (4) 
(1) + (2) + (3) + (4) : 
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD) 
hay (1/2)(AB + BC + CD + DA) < AC + BD (*) 
Mặt khác : 
AC < AB + BC (1') 
BD < BC + CD (2') 
AC < CD + DA (3') 
BD < DA + AB (4') 
(1') + (2') + (3') + (4') : 
2(AC + BD) > 2(AB + BC + CD + DA) 
hay AC + BD < AB + BC + CD + DA (**) 
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA

16 tháng 8 2018

Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.

Gọi O là giao điểm của AC và BD ta có:

AC+BD=AO+OB+OC+OD>AB+CD=a+c

Tương tự: AC+BD>b+d.

Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2

Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.

Theo bất đẳng thức tam giác ta có:

AC<a+b;AC<c+d

BD<b+c;BD<a+d

⇒2(AC+BD)<2(a+b+c+d).

⇒AC+BD<a+b+c+d.

Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.

NV
22 tháng 2 2019

A B C D O

Áp dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, ODA ta có:

\(\left\{{}\begin{matrix}OA+OB>AB\\OB+OC>BC\\OC+OD>CD\\AO+OD>AD\end{matrix}\right.\)

\(\Rightarrow OA+OB+OB+OC+OC+OD+OA+OD>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD>\dfrac{AB+BC+CD+DA}{2}\)

Tương tự, áp dụng BĐT tam giác cho các tam giác ABC,BCD, CDA, DAB ta có: \(AB+BC>AC;BC+CD>BD;CD+DA>AC;DA+AB>BD\)

Cộng vế với vế:

\(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)

\(\Leftrightarrow AC+BD< AB+BC+CD+DA\)

19 tháng 6 2018

cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90 

6 tháng 6 2016

Gọi độ dài cạnh của tam giác (đều) ABC là x nên chu vi tam giác ABC là 3x , cạnh và chu vi tứ giác ABCD lần lượt là x - 10 và 4(x - 10).

Theo đề , ta có : 3x = 4(x - 10) = 4x - 40 => 40 = 4x - 3x = x => x - 10 = 40 - 10 = 30.

Vậy độ dài cạnh của tứ giác MNPQ và tam giác ABC lần lượt là 30 cm và 40 cm.

6 tháng 6 2016

Gọi độ dài cạnh hình tam giác là a

Độ dài cạnh hình tứ giác là b

Theo bài ra ta có: a=10+b

Chu vi hình tam giác là ax3 = (b+10)x3=3xb+30

Chu vi hình tứ giác là bx4

=> 3xb+30=bx4

=> 30 = 4xb-3xb

=> 30 = b

Vậy độ dài cạnh tứ giác MNPQ là 30 cm

=> Độ dài tam giác ABC là 40 cm