cho n thuộc N c/m
\(3^{n+2}\)- \(2^{n+2}\)+\(3^n\)-\(2^{^n}\)chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
a)*Với n lẻ
=>n+15 chẵn
=>(n+10).(n+15) chia hết cho 2
*Với n chẵn
=>n+10 chẵn
=>(n+10).(n+15) chia hết cho 2
=>ĐPCM
b)Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n, n+1 và n+2 là 3 số tự nhiên liên tiếp
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3
c) Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n là số tự nhiên
=>n có 3 dạng là 3k,3k+1,3k+2
*Với n=3k=>n chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+1
=>2n+1=2.(3k+1)+1=2.3k+2+1=3.2k+3=3.(2k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+2
=>n+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n.3^2+3^n-\left(2^n.2^2+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\) chia hết cho 10
Bảo nè,phải sửa lại đề n\(\in\)N* vì n=0 thì \(2^{0-1}=2^{-1}=\frac{1}{2}\) nên \(\left(3^n-2^{n-1}\right).10\) không chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^{n-1}.8+3^n-2^{n-1}.2\)
\(=3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)\(⋮\)\(10\)