K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

1/\(\frac{84^2-16^2}{37^2-63^2}=\frac{\left(84-16\right)\left(84+16\right)}{\left(37-63\right)\left(37+63\right)}=\frac{68.100}{-26.100}=\frac{-68}{26}=\frac{-34}{13}\)

2/ \(199^2=\left(200-1\right)^2=40000-400+1=39601\)

3/ \(31^2=\left(30+1\right)^2=900+60+1=961\)

4/ \(45.55=\left(50-5\right)\left(50+5\right)=50^2-25=2500-25=2475\)

5/ \(78.82=\left(80-2\right)\left(80+2\right)=80^2-4=6400-4=6396\)

21 tháng 1 2022

Đặt \(\dfrac{1}{117}=a;\dfrac{1}{119}=b\)

\(\Rightarrow3ab-4a\left(5+118b\right)-5ab+24a\)

\(3ab-20a-472ab-5ab+24a\)

\(-474ab+4a\)

\(-\dfrac{474}{117.119}+\dfrac{4}{117}=-\dfrac{1}{117}\left(\dfrac{474}{119}-4\right)\)

\(-\dfrac{1}{117}.\left(-\dfrac{2}{119}\right)=\dfrac{2}{117.119}\)

11 tháng 5 2017

M=-430/99157

N=-5710/13923

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 1 2017

a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:

\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)

\(=3y+xy-24x+4xy-5xy+24x\)

\(=3y\)

\(=\frac{3}{119}\)

b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(=7-5\)

= 2

27 tháng 1 2017

a) Đặt a = \(\frac{1}{117}\)và b = \(\frac{1}{119}\)

Theo đề ta có:

A = (3 + a) b - 4a ( 5+1-b)-5ab+24a

= 3b + ab - 20a -4a + 4ab - 5ab + 24a

= 3b

= 1.\(\frac{1}{119}\) = \(\frac{3}{119}\)

Vậy A = \(\frac{3}{119}\)

ok