tìm x
1/3+1/15+1/35+......+1/x *(x +2)=1005/2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
Câu 1 bị sai đề bài.
Câu 2:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}+\frac{1}{2011}\)
Vì:
\(\frac{1}{2011}>\frac{1}{2012};\frac{1}{2011}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}>0\)
\(\Rightarrow\)\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
a, 2/3 của -420 là :
-420 x 2/3 = -280
Số cần tìm là :
-280 x 5/8 = -175
Vậy số cần tìm là -175
b, 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x ( x + 2 ) = 1005 / 2011
1/2 x ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/ ( x ( x + 2 ) = 1005 / 2011
1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/ x + 2 ) = 1005 / 2011
1/2 x ( 1 - 1/ x + 2 ) = 1005 / 2011
1 - 1 / x + 2 = 1005 / 2011 : 1/2
1 - 1 / x + 2 = 2010 / 2011
x + 2 / x + 2 - 1 / x + 2 = 2010 / 2011
x + 2 - 1 / x + 2 = 2010 / 2011
x + 1 / x + 2 = 2010 / 2011
+> x + 1 = 2010
x = 2010 - 1
x = 2009
+> x + 2 = 2011
x = 2011 - 2
x = 2009
Vậy x = 2009
Tk nha Đúng đó !!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{3}-\frac{1}{x+2}=\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{3}-\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{2011}\)
\(\Rightarrow x+2=2011\)
\(x=2009\)
Đặt biểu thứ là A
2A=2/1.3+2/2.5+...+2/x.x+2
2A=1-1/3+1/3-1/5+.......+1/x-1/x+2
2A=1-1/x+2
(X - 1005) x (1 + 3 + 5+ 7 + 9 + 11) = 1989 x 1990 x (70 - 35 x 2)
(X - 1005) x (11 + 1)[(11 - 1) : 2 + 1): 2] = 1989 x 1990 x 0
(X - 1005) x 36 = 0
X - 1005 = 0 : 36
X - 1005 = 0
X = 1005
( x - 1005 ) . ( 1 + 3 + 5 + 7 + 9 + 11 ) = 1989 . 1990 . ( 70 - 35 . 2 )
( x - 1005 ) . 36 = 1989 . 1990 . ( 70 - 70 )
( x - 1005 ) . 36 = 1989 . 1990 . 0
( x - 1005 ) . 36 = 0
x - 1005 = 0
x = 1005
Lời giải:
a.
$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})....(1-\frac{1}{2011})$
$=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2010}{2011}$
$=\frac{1.2.3...2010}{2.3.4...2011}$
$=\frac{1}{2011}$
b.
$a=35:(3+4)\times 3=15$
$b=35-15=20$
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{x\times\left(x+2\right)}=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+.....+\frac{1}{x\times\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:\frac{1}{2}=\frac{2010}{2011}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{2010}{2011}=\frac{1}{2011}\)
\(\Leftrightarrow x+2=2011\)
\(\Leftrightarrow x=2009\)
Vậy x = 2009
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Rightarrow\frac{x+1}{x+2}=\frac{2010}{2011}\)
\(\Rightarrow x+1=2010\Leftrightarrow x=2009\)