K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Giả sử tồn tại 2 số a,b>0 thỏa mãn đẳng thức trên

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\left(a-b\right)\left(b-a\right)=ab\)

\(\Leftrightarrow-\left(a-b\right)^2=ab\)

Vì \(-\left(a-b\right)^2\le0\)

Mà a,b > 0 => ab > 0

=>mâu thuẫn

=>giả sử sai

Vậy không tồn tại 2 số a,b>0 thỏa mãn đề bài

1 tháng 7 2018

Vì \(ab>0\)nên tồn tại 1 trong hai trường hợp \(a>b\)và \(b>a\)

Với \(a>b\)ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}< 0\)

\(\frac{1}{a-b}>0\)vì a > b 

Từ các dữ kiện trên thì không thể tồn tại các số a,b

28 tháng 10 2016

Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)

\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)

\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)

Nhưng giá trị này làm cho biểu thức không có nghĩa.

 

28 tháng 10 2016

GOOD

29 tháng 5 2017

Ta có :

a > b => \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)

a > b => a - b > 0 \(\Rightarrow\frac{1}{a-b}>0\)
Từ 2 ý trên và theo giả thuyết đề bài thì không tồn tại 2 giá trị a,b > 0 thõa mãn 

29 tháng 5 2017

Bỏ chỗ a>b đi 

20 tháng 9 2017

\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{a\cdot b}\)

Để nó bằng \(\frac{1}{a\cdot b}\)thì b - a phải bằng 1

Cho nên \(\forall b-a=1\Rightarrow\frac{1}{a}-\frac{1}{b}=\frac{1}{ab}\)

16 tháng 8 2017

Có 1/a + 1/b + 1/c = 0

<=> 1/a = -1/b - 1/c = \(\frac{-b-c}{bc}\)

<=> a. - (b+c) = bc <=> - a. (b+c) = bc

<=> (b+c)^2 = bc               ( vì a+b+c=0 nên -a = b+c)

<=> b^2 + 2bc + c^2 = bc

<=> b^2 + bc + c^2 = 0

<=> (b+1/4c)^2 + c^2 = 0

<=> b+1/4c = 0 và c = 0 ( mâu thuẫn giả thiết)

=> ko tồn tại các số a.b.c khác 0 tm đk trên

26 tháng 3 2019

Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo