K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm 
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm 
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1) 
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng) 
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1) 
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c) 
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c) 
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1) 
=(c²+c+1)/(1+c)²+c/(c+1)² =1

1 tháng 7 2018

Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm 
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm 
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1) 
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng) 
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1) 
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c) 
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c) 
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1) 
=(c²+c+1)/(1+c)²+c/(c+1)² =1

1 tháng 7 2018

Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm 
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm 
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1) 
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng) 
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1) 
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c) 
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c) 
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1) 
=(c²+c+1)/(1+c)²+c/(c+1)² =1

25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

NV
30 tháng 12 2021

Đề bài này sai

NV
14 tháng 9 2021

\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)

\(=0+0=0\) (ddpcm)

14 tháng 9 2021

\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ