K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(\frac{x}{\left(x-y\right)\left(x-z\right)}\)  \(+\frac{y}{\left(x-y\right)\left(y-z\right)}\)\(+\frac{z}{\left(y-z\right)\left(z-x\right)}\)

\(=\)\(\frac{x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)  \(+\frac{y\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\)\(\frac{z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x\left(y-z\right)+y\left(x-z\right)-z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\)\(\frac{xy-xz+xy-yz-xz+yz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\) 

\(=\)\(\frac{2xy-2xz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{2x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\)\(\frac{2x}{\left(x-y\right)\left(x-z\right)}\)

30 tháng 6 2016

a)Z(y-x)+y(z-x)+x(y+z)-2yz

=>yz-xz+yz-xy+xy+xz-2yz

=(yz+yz)-(xz-xz)+(-xy+xy)-2yz

=2yz-2yz

=0

29 tháng 7 2015

(x+y-z-t)2-(z+t+x-y)2= (x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y) = 0.2(x+y-z-t) = 0

Vậy (đpcm)

14 tháng 7 2017

Ta có \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2-3\left(x^2+y^2+z^2\right)\)

=\(x^2+y^2+z^2+2xy+2yz+2xz+x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2-3x^2-3y^2-3z^2\)

\(=0\)

Vậy biểu thức có giá trị không phụ thuộc vào biến 

12 tháng 11 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

\(P=\dfrac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}+\dfrac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{x\sqrt{y}-x\sqrt{z}-y\sqrt{x}+y\sqrt{z}+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{z}\left(x-y\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)+z\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{xy}-\sqrt{zx}-\sqrt{zy}+z\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

=1

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

13 tháng 7 2016

P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1) 
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz 
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2... 
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2... 
= (y^2-z)(-x^3+xy-yz^2+x^2z^2) 
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)] 
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến