Tìm x nguyên để D nguyên biết \(D=\frac{x^2-2x+1}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=\(\frac{x^2+x-3x-3+4}{x+1}\)=\(\frac{\left(x+1\right)\left(x-3\right)+4}{x+1}\)=\(\left(x-3\right)+\frac{4}{x+1}\)là số nguyên (x#-1)
=> \(4⋮\left(x+1\right)\)=>\(x\in\left\{-5;-3;-2;0;1;3;\right\}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)
\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)
\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)
\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)
\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)
Để \(D\inℤ\)
\(\Leftrightarrow4x+4⋮x^2+5\)
\(\Leftrightarrow4x^2+4x⋮x^2+5\)
\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)
\(\Leftrightarrow16x⋮x^2+5\)
\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)
\(\Leftrightarrow1280⋮x^2+5\)
\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)
Đoạn này bạn làm nốt nhé
bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)
k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !!
MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha
Có \(D=\frac{\left(x^2+2x+1-4x\right)}{x+1}\)
= \(\frac{\left(x+1\right)^2-4x}{x+1}\)
= \(x+1-\frac{4x}{x+1}\)
Do x là số nguyên => x+1 là số nguyên => để D nguyên thì \(4x⋮x+1\)(1)
Mà \(4\left(x+1\right)⋮x+1\)
=> \(4x+4⋮x+1\)(2)
Lấy (2)-(1) ta có \(4⋮x+1\)
Do đó ta xét x + 1 \(\in\left(1,2,4,-1,-2,-4\right)\)
=> x \(\in\left(0,1,3,-2,-3,-5\right)\)
a, ĐK : \(x\ne\pm3;\frac{1}{2}\)
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)
\(=\left(\frac{\left(x-1\right)\left(x-3\right)+2\left(x+3\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{2x-1-2x-1}{2x+1}\right)\)
\(=\frac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}:\left(-\frac{2}{2x+1}\right)\)
\(=\frac{-2x+6}{\left(x+3\right)\left(x-3\right)}.\frac{-\left(2x+1\right)}{2}=\frac{2x+1}{x+3}\)
b, Ta có : \(\left|x+1\right|=\frac{1}{2}\)
TH1 : \(x+1=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2}\)
Thay vào biểu thức A ta được : \(\frac{-1+1}{-\frac{1}{2}+3}=0\)
TH2 : \(x+1=-\frac{1}{2}\Leftrightarrow x=-\frac{3}{2}\)
Thay vào biểu thức A ta được : \(\frac{-3+1}{-\frac{3}{2}+3}=\frac{-2}{\frac{3}{2}}=-\frac{4}{3}\)
c, Ta có : \(P=\frac{x}{2}\Rightarrow\frac{2x+1}{x+3}=\frac{x}{2}\Rightarrow4x+2=x^2+3x\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
b, Ta có : \(\frac{2x+1}{x+3}=\frac{2\left(x+3\right)-5}{x+3}=2-\frac{5}{x+3}\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x + 3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\) \(\left(ĐK:x\ne1;x\ne2\right)\)
\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)
\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)
\(=\frac{x}{-x^2+2x}\)
\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)
b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)
\(\Leftrightarrow2-x=2\)
\(\Leftrightarrow-x=0\Leftrightarrow x=0\)
c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)
\(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\)
\(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)
\(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)
\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)
\(\Leftrightarrow1< x< 2\)
Vậy \(1< x< 2\) thì A<1
Để biểu thức D nhận giá trị nguyên thì \(\frac{x^2-2x+1}{x+1}\in Z\Leftrightarrow x^2-2x+1⋮x+1\)
Ta thấy: \(\left(x+1\right).\left(x+1\right)⋮x+1\Rightarrow x^2+2x+1⋮x+1\)
Suy ra \(x^2-2x+1-\left(x^2+2x+1\right)⋮x+1\)
\(\Rightarrow-4x⋮x+1\). Ta có: \(4\left(x+1\right)⋮x+1\Rightarrow4x+4⋮x+1\)
\(\Rightarrow\) \(4x+4+\left(-4x\right)⋮x+1\Rightarrow4⋮x+1\). Mà \(x+1\in Z\)
Nên \(x+1\)là ước nguyên của 4 \(\Rightarrow x+1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}.\)
Kết luận: ...
Cảm ơn bạn nha!!