Cho tam giac abc co a<90 do ve ra ngoai hai tam giac vuong can tai a abd va ace
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AMC\)và \(\Delta ABC\)có
Chung chiều cao hạ từ A xuống BC
\(MC=\frac{1}{4}BC\)
=>\(S_{AMC}=\frac{1}{4}S_{ABC}\)
Mặt khác \(\Delta AMC\)và \(\Delta ABC\)có chung đáy AC =>\(MH=\frac{1}{4}BK\)
Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))
Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin30^0=6:\dfrac{1}{2}=12\left(cm\right)\)
\(\Leftrightarrow AC=6\sqrt{3}\left(cm\right)\)
a) AB = 20 cm ( theo Pi - ta - go )
b) tg MNP là tg vuông (MN2 + NP2 = PM2 )
a) Xét tam giác ABC vuông tại A:
Theo đinh lý Py-ta-go ta có : AB2 + AC2 = BC2
AB2 = BC2 - AC2
AB2 = 292 - 212 => AB2 = 841 - 441 = 400 => AB = 20 ( cm )
b) Ta có : 252 + 602 = 652 hay 625 + 3600 = 4225
=> Tam giác MNP là tam giác vuông