Bài 1: Tính nhanh:
(2011*2019+16)/(2015*2015)
Bài 2: Tìm chữ số tận cùng của tích
7*7*7...*7(có 2001 thừa số 7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
74=2401 tận cùng là 01 mà 2401n luôn tận cùng là 01
=>72012=74.503=2401503 tận cùng là 01
73 tận cùng là 43
=> 72015 tận cùng là 43
Ta thấy:
7^2015 = 7^4.7^4.7^4.^4. ... .7^4 . 7
= 2401 . 2401 . 2401 . ... . 2401 . 7
=> 7^2015 có chữ số tân5 cùng là 7
Còn 5.2^100 thì có chữ số tận cùng là 0 ( vì mọi số chẵn khi nhân với năm đều có chữ số tận cùng là 0)
=> 7^2015 + 2.2^100 có chữ số tận cùng là 7 + 0 = 7
72015 = 74k+3 ; 74k có chữ số tận cùng là 1.
74k+3 có chữ số tận cùng là: 342 + 1 = 343 ( chữ số 3 tận cùng )
2100 = 24k có chữ số tận cùng là 6.
6.5 = 30 ( chữ số 0 tận cùng )
3 + 0 = 3
Vậy chữ số tận cùng là 3.
là người giao đề tui cũng có quyền đòi hỏi mà Nguyễn Trọng Đạt
chtt éo có bài giống mà có bài giống cũng chẳng ai làm
Bài 1 : chỗ cuối mk nhầm
\(\frac{2015x2015}{2015x2015}=0\)
Bài 2: mk ko bk
Bài 1:
\(\frac{2011x2019+16}{2015x2015}=\frac{2011x2015+2011x4+16}{2015x2015}\)\(=\frac{2015x2015-2015x4+2011x4+16}{2015x2015}\)
\(=\frac{2015x2015-4x\left(2015-2011-4\right)}{2015x2015}=\frac{2015x2015-0}{2015x2015}\)\(=\frac{2015x2015}{2015x2015}=0\)