\(\frac{x^4-y^4}{y^3-x^3}\)
rut gon phan thuc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)
\(=-\frac{x+y}{\left(x-y\right)^2}\)
a, = -3/2
b, = x-z/2
c, = (x-4).(x+4)/-x.(x-4) = -(x+4)/x = -x-4/x
k mk nha
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
a/\(\frac{10x}{5x^2}=\frac{2}{x}\)
b/\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)
= \(\frac{x^3.x-y^3.y}{y^3.x^3}\)= x.y
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(y-x\right)\left(y^2+xy+x^2\right)}=-\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=-\frac{\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)