Rút gọn S=\(\frac{n!}{m!\left(n-m\right)!}\)biết n>m. HELP ME PLEASE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có
\(N+\sqrt{x}-1=\frac{3}{\sqrt{x}-2}+\sqrt{x}-1\)
\(=\frac{3}{\sqrt{x}-2}+\sqrt{x}-2+1\)
\(\ge2\sqrt{3}+1\)
Dấu = xảy ra khi \(\frac{3}{\sqrt{x}-2}=\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2=\sqrt{3}\)
\(\Leftrightarrow\)x = (\(\sqrt{3}+2\))2
đặt \(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}\)
giờ ta xét từng hạng tử 1 nhé:
\(A.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}\)
\(=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(n-p\right).n+m.\left(p-m\right)}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{n^2-pn+m.p-m^2}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(n-m\right).\left(n+m\right)+p.\left(m-n\right)}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(p-m-n\right).\left(m-n\right)}{m.n}\right)\)
\(=1+\frac{p.\left(p-m-n\right)}{m.n}\)
\(=1+\frac{p^2-p.\left(m+n\right)}{m.n}\)
bây h ta sẽ sử dụng giả thiết \(m+n+p=0\Rightarrow m+n=-p\)
\(\Rightarrow A.\frac{p}{m-n}=1+\frac{p^2+p^2}{m.n}=1+\frac{2p^3}{m.n.p}\)
CM tương tự ta có: \(A.\frac{m}{n-p}=\frac{2m^3}{mnp}\) ; \(A.\frac{n}{p-m}=\frac{2n^3}{mnp}\)
\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}=3+\frac{2\left(p^3+m^3+n^3\right)}{m.n.p}\)
\(m+n+p=0\Rightarrow\left(m+n+p\right).\left(m^2+p^2+n^2-mn-mp-np\right)=0\Leftrightarrow m^3+n^3+p^3-3mnp=0\)
\(\Leftrightarrow m^3+n^3+p^3=3mnp\)
\(S=3+\frac{2.3mnp}{mnp}=3+6=9\)
Vậy \(S=9\Leftrightarrow m+n+p=0\)