K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)

Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)

11 tháng 12 2016

\(\frac{\left(m-n\right)^3-p^3}{m-n-p}=\frac{\left(m-n-p\right)\left[\left(m-n\right)^2+p\left(m-n\right)+p^2\right]}{m-n-p}=m^2-2mn+n^2+mp-np+p^2\)

19 tháng 11 2016

1/ Ta có 

\(N+\sqrt{x}-1=\frac{3}{\sqrt{x}-2}+\sqrt{x}-1\)

\(=\frac{3}{\sqrt{x}-2}+\sqrt{x}-2+1\)

\(\ge2\sqrt{3}+1\)

Dấu = xảy ra khi \(\frac{3}{\sqrt{x}-2}=\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2=\sqrt{3}\)

\(\Leftrightarrow\)x = (\(\sqrt{3}+2\))2

19 tháng 11 2016

Đáp số câu 2

\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

đặt \(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\)

\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}\)

giờ ta xét từng hạng tử 1 nhé:

\(A.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}\)

\(=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)

\(=1+\frac{p}{m-n}.\left(\frac{\left(n-p\right).n+m.\left(p-m\right)}{m.n}\right)\)

\(=1+\frac{p}{m-n}.\left(\frac{n^2-pn+m.p-m^2}{m.n}\right)\)

\(=1+\frac{p}{m-n}.\left(\frac{\left(n-m\right).\left(n+m\right)+p.\left(m-n\right)}{m.n}\right)\)

\(=1+\frac{p}{m-n}.\left(\frac{\left(p-m-n\right).\left(m-n\right)}{m.n}\right)\)

\(=1+\frac{p.\left(p-m-n\right)}{m.n}\)

\(=1+\frac{p^2-p.\left(m+n\right)}{m.n}\)

bây h ta sẽ sử dụng giả thiết \(m+n+p=0\Rightarrow m+n=-p\)

\(\Rightarrow A.\frac{p}{m-n}=1+\frac{p^2+p^2}{m.n}=1+\frac{2p^3}{m.n.p}\)

CM tương tự ta có:  \(A.\frac{m}{n-p}=\frac{2m^3}{mnp}\)  ;    \(A.\frac{n}{p-m}=\frac{2n^3}{mnp}\)

\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}=3+\frac{2\left(p^3+m^3+n^3\right)}{m.n.p}\)

\(m+n+p=0\Rightarrow\left(m+n+p\right).\left(m^2+p^2+n^2-mn-mp-np\right)=0\Leftrightarrow m^3+n^3+p^3-3mnp=0\)

\(\Leftrightarrow m^3+n^3+p^3=3mnp\)

\(S=3+\frac{2.3mnp}{mnp}=3+6=9\)

Vậy \(S=9\Leftrightarrow m+n+p=0\)