Cho tứ giác vuông ABCD có góc A=D=90.DDgf chéo BDvuoong góc BC và BD=BC
a)Tính các góc hình thang
b)Biết AB=3cm.Tính độ dài BC,CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C2:Kẻ \(BF\perp DC\) tại F
\(\Rightarrow ABFD\) là hình chữ nhật( vì tứ giác có 3 góc nhọn)
\(\Rightarrow DF=AB=4a\Rightarrow FC=DC-FA=5a\)
Áp dụng hệ thức lượng trong tam giác vuông có:
\(BF^2=DF.FC=4a.5a=20a^2\)
Áp dụng định lí pytago vào tam giác vuông BDF có:
\(BD^2=BF^2+FD^2=20a^2+\left(4a\right)^2=36a^2\)
\(\Rightarrow BD=6a\)
có:
do ABCD là hình thang\(=>AB//CD=>\angle\left(ABD\right)=\angle\left(CDB\right)\)(so le trong
\(\)có \(\angle\left(DAB\right)=\angle\left(DBC\right)=90^o=>\Delta ABD\sim\Delta BDC\left(g.g\right)\)
\(=>\dfrac{AB}{BD}=\dfrac{BD}{DC}=>BD=\sqrt{AB.DC}=\sqrt{4a.9a}=6a\)
a) Xét \(\Delta BDC\)vuông tại B có BD = BC
\(\Rightarrow\Delta BDC\)vuông cân tại B
\(\Rightarrow\widehat{BDC}=\widehat{BCD}=45^o\)
Ta có \(\widehat{BAD}+\widehat{ADC}+\widehat{DCB}+\widehat{CBA}=360^o\)
\(\Leftrightarrow90^o+90^o+45^o+\widehat{CBA}=360^o\)
\(\Leftrightarrow\widehat{CBA}=135^o\)
b) Ta có : \(\widehat{ADB}+\widehat{BDC}=\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}+45^o=90^o\)
\(\Leftrightarrow\widehat{ADB}=45^o\)
Mà \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}=45^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ABD}\left(=45^o\right)\)
\(\Rightarrow\Delta ABD\)vuông cân tại A
Áp dụng định lí Py-ta-go cho tam giác ABD ta được :
\(AB^2+AD^2=BD^2\)
\(\Leftrightarrow3^2+3^2=BD^2\)
\(\Leftrightarrow BD^2=18\)
\(\Leftrightarrow BD=\sqrt{18}\left(cm\right)\)
\(\Rightarrow BC=BD=\sqrt{18}\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác BDC vuông cân tại B ta được :
\(\sqrt{18}^2+\sqrt{18}^2=CD^2\)
\(\Leftrightarrow CD^2=36\)
\(\Leftrightarrow CD=6\left(cm\right)\)
Độ dài \(BC.CD=6.\sqrt{18}=18\sqrt{2}\left(cm\right)\)