K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}=\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{\left(a-b\right)\left(a^3-b^3\right)}{a^2b^2}=\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\)

ta có \(\left(a-b\right)^2\ge0;a^2+ab+b^2>0;a^2b^2>0\)

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)

5 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

 Suy ra: a = kb

              c = kd

Do đó: \(\frac{a\cdot c}{b\cdot d}=\frac{kb\cdot kd}{b\cdot d}=\frac{k^2\cdot\left(b\cdot d\right)}{b\cdot d}=k^{2\left(1\right)}\)

            \(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2^{\left(2\right)}\)

Từ (1) và (2)  suy ra \(\frac{a\cdot c}{b\cdot d}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)

18 tháng 9 2019

Ta có a + b =1 \(\Leftrightarrow b=1-a\)

Thay vào bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\) , ta được:

\(a^2+\left(1-a\right)^2\ge\frac{1}{2}\Leftrightarrow a^2+1-2a+a^2̸̸\ge\frac{1}{2}\)

\(\Leftrightarrow2a^2-2a+1\ge\frac{1}{2}\Leftrightarrow4a^2-4a+2\ge1\)

\(\Leftrightarrow4a^2-4a+1\ge0\Leftrightarrow\left(2a-1\right)^2\ge0\) ( luôn đúng )
Vậy bất đẳng thức được chứng minh

Chúc bạn học tốt !!!

13 tháng 11 2016

Con hiếu bđ 7a4

21 tháng 9 2019

Vì a , b > 0 \(\Rightarrow a^3+b^3>a^3>a^3-b^3\) theo giả thiết ta có :

\(a-b>a^3-b^3\Leftrightarrow\left(a-b\right)>\left(a-b\right)\left(a^2+ab+b^2\right)\)

                                     \(\Leftrightarrow1>a^2+ab+b^2>a^2+b^2\)

                                       \(\Leftrightarrow1>a^2+b^2\left(đpcm\right)\)

     Chúc bạn học tốt !!!

21 tháng 9 2019

giải

Vì a , b > 0 \Rightarrow a^3+b^3>a^3>a^3-b^3⇒a3+b3>a3>a3−b3 theo giả thiết ta có :

a-b>a^3-b^3\Leftrightarrow\left(a-b\right)>\left(a-b\right)\left(a^2+ab+b^2\right)a−b>a3−b3⇔(a−b)>(a−b)(a2+ab+b2)

                                     \Leftrightarrow1>a^2+ab+b^2>a^2+b^2⇔1>a2+ab+b2>a2+b2

                                       \Leftrightarrow1>a^2+b^2\left(đpcm\right)⇔1>a2+b2(đpcm)