Bài 1: Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố đó.
Bài 2: Tìm tất cả các số nguyên tố x,y,z sao cho \(x^2 - 6y^2 = 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
Câu trả lời làXét 2 TH :
1, p chẵn
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất => không tồn tại p thỏa mãn
2, p lẻ
Giả sử p = m + n (m, n là số nguyên tố). Vì p lẻ => trong m và n tồn tại 1 số lẻ, 1 số chẵn
Giả sử m lẻ, n chẵn => n = 2 => p = m + 2 => m = p - 2 (1)
Tương tự p = q - r (q, r là số nguyên tố). Vì p lẻ => trong q và r tồn tại 1 số lẻ, 1 số chẵn
Nếu q chẵn => q = 2 => p = 2 - r < 0 (loại)
=> q lẻ, r chẵn => r = 2 => p = q - 2 => q = p + 2 (2)
Từ (1),(2) => p - 2; p; p + 2 là 3 số nguyên tố lẻ liên tiếp (3)
- Nếu p < 5 => p - 2 < 3 => p - 2 không thể là số nguyên tố lẻ
- Nếu p = 5 => (3) thỏa mãn
- Nếu p > 5 :
+ Khi đó p - 2; p; p + 2 > 3
+ Nếu (p - 2) : 3 dư 1 thì p ⋮3⇒p⋮3⇒p không phải là số nguyên tố (loại)
+ Nếu (p - 2) : 3 dư 2 thì p + 2 ⋮3⇒p+2⋮3⇒p+2 không phải là số nguyên tố (loại)
Vậy p = 5
Giả sử a, b, c, d, e là các số nguyên tố (d > e)
Theo bài ra ta có: a = b + c = d – e (*)
Từ (*) ⇒ a > 2 ⇒ a là số nguyên tố lẻ
+ b + c = d – e là số lẻ.do b, d là các số nguyên tố ⇒ b, d là số lẻ ⇒ c, e là số chẵn.
+ c = e = 2 (do e, c là các số nguyên tố)
+ a = b + 2 = d – 2 ⇒ d = b + 4,vậy ta cần tìm số nguyên tố b sao cho b + 2, b + 4 cũng là số nguyên tố
+ b = 3
Vậy số nguyên tố cần tìm là 5
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2