-8x(x-5)+(2x^2-8x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )
\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)
\(\Rightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow-3x+2x+x=10+4-14\)
\(\Leftrightarrow0=0\)
Vậy pt đã cho có nghiệm đúng với mọi x
\(\dfrac{7}{8x}+\dfrac{5-x}{4x^2-8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\)
ĐKXĐ: x ≠ 0; x ≠ 2
\(< =>\dfrac{14x-28+20-4x}{16x\left(x-2\right)}=\dfrac{8x-8+2x}{16x\left(x-2\right)}\)
Suy ra: 14x - 28 + 20 - 4x = 8x - 8 + 2x
<=> 14x - 8x - 2x - 4x = 28 - 20 - 8
<=> 0x = 0
Vậy: S = { x | x ≠ 0;2 }
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
ĐKXĐ: x∉{0;2}
Ta có: \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\Leftrightarrow\frac{5-x}{4x\left(x-2\right)}+\frac{7}{8x}-\frac{x-1}{2x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}=0\)
Suy ra: \(10-2x+7x-14-4x+4-x=0\)
\(\Leftrightarrow0x=0\)
Vậy: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2\right\}\end{matrix}\right.\)
a) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
\(\Leftrightarrow\left(64x^2+8x+25\right)\left(8x^2+10x+3\right)-9=0\)
Đặt a = \(8x^2+10x+3\)
\(\left(8a+1\right)a-9=0\)
\(\Leftrightarrow8a^2+a-9=0\)
\(\Leftrightarrow\left(a-1\right)\left(8a+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{9}{8}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}8x^2+10x+3=1\\8x^2+10x+3=-\frac{9}{8}\end{cases}}\)
mà \(8x^2+10x+3=1\Rightarrow8x^2+10x+2=0\)
\(\Rightarrow2\left(x+1\right)\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-0,25\end{cases}}\)