1/2*(1+2)+1/2+(1+2+3)+.............+1/2*(1+2+3+4+..........+9) tính nhanh Ai giải dược like luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk chỉ pik câu C thui
C= (1 - 1/2).(1 - 1/3).(1 - 1/4).......(1 - 4/4)....(1-1/2007)
C= (1 - 1/2).(1 - 1/3)..........0........(1 - 1/2007)
C= 0
![](https://rs.olm.vn/images/avt/0.png?1311)
A= 1+2+22+23+24 / 1+2+22+23=20+....+24/ 20+....+23
=>rút gọn vế trái và vế phải ta được kết quả là ;24=16
B thì làm tương tự bài trên
chúc bạn họ tốt !
\(A=\frac{\left(1+2+2^2+2^3+2^4\right)}{\left(1+2+2^2+2^3\right)}\)
\(A=\frac{2^4\left(1+2+2^2+2^3\right)}{\left(1+2+2^2+2^3\right)}\)
\(A=2^4=16\)
\(B=\frac{\left(1+3+3^2+3^3+3^4\right)}{\left(1+3+3^2+3^3\right)}\)
\(B=\frac{3^4\left(1+3+3^2+3^3\right)}{\left(1+3+3^2+3^3\right)}\)
\(B=3^4=81\)
\(\text{Ta co }A=16< B=81\)
\(\Rightarrow A< B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng công thức \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)ta có:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}=\frac{\frac{201.202}{2}-1}{2}=10150\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)
Ta có :
\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)
\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=2\times\frac{49}{102}\)
\(A=\frac{49}{51}\)
đề bài mk chỉ cho 50 thôi ko có 51 đâu
nên mk cho bạn 1k thôi nhé