Phân tích đa thức thành nhân tử:
a(a-b)^2-(b-a)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
`a, a^3 - a^2b + a - b`
`= a^2(a-b) + (a-b)`
`= (a^2+1)(a-b)`
`b, x^2 - y^2 + 2y - 1`
`= x^2 - (y-1)^2`
`= (x-y+1)(x+y-1)`
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
\(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\\ B=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\\ C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)
a) \(A=4x\left(x^2-2x+1\right)=4x\left(x-1\right)^2\)
b) \(B=\left(x^2-2xy+y^2\right)-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)
c) \(C=\left(x-2\right)\left(x^2+2x+4\right)+3\left(x-2\right)=\left(x-2\right)\left(x^2+2x+7\right)\)
Lời giải:
a.
$ab(a-b)+bc(b-c)+ca(c-a)$
$=ab(a-b)-bc[(a-b)+(c-a)]+ca(c-a)$
$=ab(a-b)-bc(a-b)-bc(c-a)+ca(c-a)$
$=(a-b)(ab-bc)-(c-a)(bc-ca)=b(a-b)(a-c)-c(c-a)(b-a)$
$=b(a-b)(a-c)-c(a-c)(a-b)=(a-b)(b-c)(a-c)$
b.
$x^2-3xy-10y^2=(x^2+2xy)-(5xy+10y^2)$
$=x(x+2y)-5y(x+2y)=(x+2y)(x-5y)$
c.
$3x(x-2)-x+2=3x(x-2)-(x-2)=(x-2)(3x-1)$
\(a,ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ =a^2b-ab^2+b^2c-bc^2+ca\left(c-a\right)\\ =\left(a^2b-bc^2\right)-\left(ab^2-b^2c\right)+ca\left(c-a\right)\\ =b\left(a-c\right)\left(a+c\right)-b^2\left(a-c\right)-ca\left(a-c\right)\\ =\left(a-c\right)\left(ab+bc-b^2-ca\right)\\ =\left(a-c\right)\left(b-c\right)\left(a-b\right)\)
\(b,x^2-3xy-10y^2\\ =x^2+2xy-5xy-10y^2\\ =x\left(x+2y\right)-5y\left(x+2y\right)=\left(x-5y\right)\left(x+2y\right)\)
\(c,3x\left(x-2\right)-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)
a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
\(a\left(a-b\right)^2-\left(b-a\right)^3=a\left(a-b\right)^2+\left(a-b\right)^3=\left(a-b\right)^2\left(a+a-b\right)=\left(a-b\right)^2\left(2a-b\right)\)