K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Gọi ƯCLN(2m + 9 ; 14m + 62) = d

=> \(\hept{\begin{cases}2m+9⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}14m+63⋮d\\14m+62⋮d\end{cases}}\)

=> \(14m+63-\left(14m+62\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> ƯCLN(2m + 9 ; 14m + 62) = 1

=> \(\frac{2m+9}{14m+62}\)là phân số tối giản

Gọi \(\left(2m+9;14m+62\right)=d\inℕ^∗\)

Ta có : \(2m+9⋮d\Rightarrow14m+63⋮d\)(1)

\(14m+62⋮d\)(2) 

Lấy (1) - (2) ta được : \(14m+63-14m-62⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

13 tháng 6 2016

Gọi U(2m+9 ; 14m+62) = d

thì: 7*(2m+9) - (14m+62) chia hết cho d

=> 1 chia hết cho d.

Vậy d = 1

Hay số hữu tỷ x tối giản. ĐPCM.

2 tháng 7 2016

Giả sử \(x=\frac{2m+9}{14m+62}\) là p/s tối giản

X là p/s tối giản <=> 2m+9 và 14m+62 nguyên tố cùng nhau <=>2m+9 và 14m+62 có ƯCLN=1

Gọi d là ƯCLN(2m+9;14m+62)

Ta có:  2m+9 chia hết cho d => 7(2m+9) chia hết cho d=>14m+63 chia hết cho d (1)

          14m+62 chia hết cho d (2)

Lấy (1)-(2),vế theo vế:

14m+63-(14m+62) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy ƯCLN(2m+9;14m+62) là 1 hay 2m+9 và 14m+62 nguyên tố cùng nhau

=>điều giả sử là đúng

Vậy \(x=\frac{2m+9}{14m+62}\) là p/s tối giản

13 tháng 8 2016

Ta có: ƯCLN(14m+63;14+62)=1UCLN(14m+63;14+62)=1
Mà (14m+63)⋮(2m+9)(14m+63)⋮(2m+9)
\Rightarrow UCLN(2m+9;14m+62)=1UCLN(2m+9;14m+62)=1
Nên 2m+914m+622m+914m+62 tối giản với mọi m nguyên

13 tháng 8 2016

chú chơi 3q củ hành à

29 tháng 6 2017

Gọi \(d=ƯCLN\left(2m+9;14m+62\right)\) (\(d\in N\)*)

\(\Leftrightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N\)*;\(1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2m+9;14m+62\right)=1\)

\(\Leftrightarrow x=\dfrac{2m+9}{14m+62}\) tối giản với mọi n

29 tháng 6 2017

Gọi d là UCLN(2m+9;14m+62)

\(\Leftrightarrow2m+9⋮d\Rightarrow7\left(2m+9\right)⋮d\Rightarrow14m+63⋮d\)

\(\Leftrightarrow14m+62⋮d\)

\(\Leftrightarrow\left(14m+63\right)-\left(14m+62\right)⋮d\)

\(14m+63-14m-62⋮d\)

\(1⋮d\)

\(\Leftrightarrow\dfrac{2m+9}{14m+62}\)tối giản với mọi m

9 tháng 3 2016

Gọi UCLN(2m+9;14m+62)=d

Ta có:2m+9 chia hết cho d       =>7(2m+9) chia hết cho d         =>14m+63 chia hết cho d

         14m+62 chia hết cho d    =>14m+62 chia hết cho d         =>14m+62 chia hết cho d

=>(14m-63)-(14m-62) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 2m+9/14m+62 tối giản với mọi m là số nguyên