cho tam giac abc , m la trung dien cua ab,n thuc ac sao cho AN=2NC .P la giao diem cua MN va BC . tinh PN/PCva PC/PB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M, N, P là trung điểm của AB; AC; BC nên
MN là đường trung bình của tg ABC => MN//BC
NP là đường trung bình của tg ABC => NP//AB
MP là đường trung bình của tg ABC => MP//AC
Xét tg PMD có
PD=PM => tg PMD cân tại P \(\Rightarrow\widehat{PMD}=\widehat{PDM}\) (góc ở đáy tg cân)
Mà MN//BC (cmt) \(\Rightarrow\widehat{NMD}=\widehat{PDM}\) (góc so le trong)
\(\Rightarrow\widehat{PMD}=\widehat{NMD}\) => MD là phân giác của \(\widehat{NMP}\) (1)
Xét tg PNE có
PE=PN => tg PNE cân tại P \(\Rightarrow\widehat{PNE}=\widehat{PEN}\) (góc ở đáy tg cân)
Mà MN//BC (cmt) \(\Rightarrow\widehat{MNE}=\widehat{PEN}\) (góc so le trong)
\(\Rightarrow\widehat{PNE}=\widehat{MNE}\) => NE là phân giác của \(\widehat{MNP}\) (2)
Xét tg NFP có
NF=PE=PN => tg NFP cân tại N\(\Rightarrow\widehat{NPF}=\widehat{NFP}\) (góc ở đáy tg cân)
Mà MP//AC (cmt) \(\Rightarrow\widehat{MPF}=\widehat{NFP}\) (góc so le trong)
\(\Rightarrow\widehat{NPF}=\widehat{MPF}\) => PE là phân giác của \(\widehat{MPN}\) (3)
Xét tg DEF
Từ (1) (2) (3) => DM; NE; PF đồng quy (trong tg 3 đường phân giác đông quy)
Xét ΔABI có MK//BI
nên MK/BI=AK/AI
=>MK/CI=AK/AI(1)
Xét ΔACI có NK//IC
nên NK/IC=AK/AI(2)
Từ (1) và (2) suy ra MK=KN
hay K là trung điểm của MN