K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

\(\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

___________________________________

\(\sqrt{99}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Công hai vế của các BĐT, ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow A=B\)

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

7 tháng 9 2021

\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)

\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)

Bài 2: 

a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)

\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)

\(=-\dfrac{3}{5}\)

b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

hay \(x=\dfrac{3}{4}\)

a: Ta có: \(3^{2x+1}< 27\)

\(\Leftrightarrow2x+1< 3\)

\(\Leftrightarrow x< 1\)

hay x=0

21 tháng 9 2021

1. 

a. 32x + 1 < 27

<=> 32x + 1 < 33

<=> 2x + 1 < 3

<=> 2x < 2

<=> 2x : 2 < 2 : 2

<=> x < 1

22 tháng 9 2021

\(1,\\ 16^x< 128^4\Rightarrow\left(2^4\right)^x< \left(2^6\right)^4\Rightarrow2^{4x}< 2^{24}\\ \Rightarrow4x=24\Rightarrow x=6\\ 2,\\ 3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\)