(x-1).(y+2)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\left(x+1\right).\left(y-2\right)=0\) \(\left(x,y\inℤ\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
2)\(\left(x-5\right).\left(y-7\right)=1\)
x-5 | 1 | -1 |
y-7 | 1 | -1 |
x | 6 | 4 |
y | 8 | 6 |
3)\(\left(x+4\right).\left(y-2\right)=2\)
x+4 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -3 | -2 | -5 | -6 |
y | 4 | 3 | 0 | 1 |
4)\(\left(x-4\right).\left(y+3\right)=-3\)
x-4 | 1 | -1 | 3 | -3 |
y+3 | -3 | 3 | -1 | 1 |
x | 5 | 3 | 7 | 1 |
y | -6 | 0 | -4 | -2 |
5)\(\left(x+3\right).\left(y-6\right)=-4\)
x+3 | -1 | 1 | -4 | 4 | 2 | -2 |
y-6 | 4 | -4 | 1 | -1 | -2 | 2 |
x | -4 | -2 | -7 | 1 | -1 | -5 |
y | 10 | 2 | 7 | 5 | 4 | 8 |
6)\(\left(x-8\right).\left(y+7\right)=5\)
x-8 | 1 | 5 | -1 | -5 |
y+7 | 5 | 1 | -5 | -1 |
x | 9 | 13 | 7 | 3 |
y | -2 | -6 | -12 | -8 |
7)\(\left(x+7\right).\left(y-3\right)=-6\)
x+7 | -1 | 1 | -6 | 6 | -2 | 2 | -3 | 3 |
y-3 | 6 | -6 | 1 | -1 | 3 | -3 | 2 | -2 |
x | -8 | -6 | -13 | -1 | -9 | -5 | -10 | -4 |
y | 9 | -3 | 4 | 2 | 6 | 0 | 5 | 1 |
8)\(\left(x-6\right).\left(y+2\right)=7\)
x-6 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 7 | 13 | 5 | -1 |
y | 5 | -1 | -9 | -3 |
ok :)
( 2 x y + 2/15 ) x 3 = 4/5
( 2 x y + 2/15 ) = 4/5 : 3
( 2 x y + 2/15 ) = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 :2
y = 1/15
(2 x y + 2/15) x 3 = 4/5
2 x y + 2/15) = 4/5 : 3
2 x y + 2/15 = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 : 2
y = 1/15
7/9 x (2 - 1/3 x y) = 14/15
(2 - 1/3 x y) = 14/15 : 7/9
(2 - 1/3 x y) = 6/5
2 - y = 6/5 x 1/3
2 - y = 2/5
y = 2/5 + 2
y = 12/5
4/21 + 5 x y - 8/7 = 1/3
4/21 + 5 x y = 1/3 + 8/7
4/21 + 5 x y = 31/21
5 x y = 31/21 - 4/21
5 x y = 9/7
y = 9/7 : 5
y = 9/35
7/12 x y - 3/12 x y = 5
y x (7/12 - 3/12) = 5
y x 1/3 = 5
y = 5 : 1/3
y = 15
a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
Câu 1 : x+1=1 => x = 0 => pt trên =-1 loại
x+1 = 3 => x= 2 => 2y-1=3 => y=2
vậy x=2;y=2
câu 2 : 2x-1 = 1 > x = 1 ; y +4=7 => y=3
2x-1 = 7 => x=4 ; y +7 = 1 => y = -6 loại
vậy x=1, y=3 v
( x - 1 ) . ( y + 2 ) = 7
( x - 1 ) . ( y + 2 ) = 1 . 7 = 7 . 1 = (-1) . (-7) = (-7) . (-1)
Trường hợp 1 : x - 1 = 1 =>x = 2
y + 2 = 7 => y = 5
Trường hợp 2 : x - 1 = 7 => x = 8
y + 2 = 1 => Y = -1
Trường hợp 3 : x - 1 = -1 => x = 0
y + 2 = -7 => y = -9
Trường hợp 4 : x - 1 = -7 => x = -6
y + 2 = -1 => y = -3
Kết luận một chút là xong rồi đó bn
not di