So sánh:
\(\frac{30-2\sqrt{45}}{4}v̀a17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x=\(\frac{30-2\sqrt{45}}{4}< \frac{30-2\sqrt{49}}{4}\)
\(\Leftrightarrow x=\frac{30-2\sqrt{45}}{4}< \frac{30-14}{4}< 4\)
Ta có x<4 (1)
lại có y=\(\sqrt{17}>\sqrt{16}\Rightarrow\sqrt{17}>4\)
=> y>4 (2)
từ (1) và (2) =>x<y
Ta có : x = \(\frac{30-2\sqrt{45}}{4}\)= \(\frac{15-\sqrt{45}}{2}\)> 0
y = \(\sqrt{17}>0\)
\(\Rightarrow\)\(x^2\)= \(\frac{\left(15-\sqrt{45}\right)^2}{4}\)= \(\frac{225-30\sqrt{45}+45}{4}\)= \(\frac{270-30\sqrt{45}}{4}\)
\(y^2\)= 17
Xét hiệu : \(x^2-y^2\)= \(\frac{270-30\sqrt{45}}{4}\)\(-\)17 = \(\frac{202-30\sqrt{45}}{4}\)= \(\frac{\sqrt{40804}-\sqrt{40500}}{4}>0\)
( vì 40804\(>\)40500 \(\ge\)0 )
\(\Rightarrow\)\(x^2>y^2\)\(\Rightarrow\)\(x>y\) ( vì \(x,y>0\))
Giả sử
\(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)
\(\Leftrightarrow15>2\sqrt{17}+\sqrt{45}\)
\(\Leftrightarrow225>113+4\sqrt{765}\)
\(\Leftrightarrow28>\sqrt{765}\)
\(\Leftrightarrow784>765\) (đúng)
Vậy \(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)
Ta có : \(\frac{45}{65}=\frac{9}{13};\frac{48}{52}=\frac{12}{13};\frac{1010}{1313}=\frac{10}{13}\)
\(=>\frac{9}{13}< \frac{10}{13}< \frac{12}{13}\)
Câu a : Cộng 2 vế cho 6 ta được :
\(7+6......7+\sqrt{37}\)
Mà : \(6=\sqrt{36}< \sqrt{37}\)
\(\Rightarrow7+6< \sqrt{37}+1\)
\(\Rightarrow7< \sqrt{37}+1\)
Cách khác của câu a.
Ta có : \(\sqrt{37}>\sqrt{36}=6\)
\(\Rightarrow\sqrt{37}+1>6+1=7\)
Vậy \(\sqrt{37}+1>7\)
Ta có: \(\frac{30-2\sqrt{45}}{4}=\frac{30}{4}-\frac{2\sqrt{45}}{4}=7,5-\frac{2\sqrt{45}}{4}\le7,5\)
\(\Rightarrow\frac{30-2\sqrt{45}}{4}< 17\)
Chúc bn hc tốt!
Ta có: \(30-2\sqrt{45}\)< \(30\)< \(68\)
\(\Rightarrow\frac{30-2\sqrt{45}}{4}\)< \(\frac{68}{4}=17\)