a, Tính nhanh: A= 1.5.6 + 2.10.12 + 4.20.24 + 9.45.54 trên 1.3.5 + 2.6.10 + 4.12.20 + 9.27.45
b, Chứng minh: Với k thuộc N* thì ta luôn có: k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1)
Áp dụng tính tổng: S = 1.2 + 2.3 + 3.4 + ... + n(n + 1).
Nhanh lên nha mình đang cần gấp, cảm ơn trước
a) Xét trên tử
Ta có :
1.5.6 + 2.10.12 + 4.20.24 + 9.45.54
= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6
= 1.5.6 ( 2^3 + 4^3 + 9^3 )
Xét mẫu
Ta có :
1.3.5 + 2.6.10 + 4.12.20 + 9.27.45
= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5
= 1.3.5 ( 2^3 + 4^3 + 9^3 )
Ta có
A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2
b) Ta có :
k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )
Ta có :
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )
\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3
3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)