K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sung đề: ΔIKL cân tại I

a: góc IKL=góc KLI=(180-62)/2=118/2=59 độ

b: \(\widehat{OKL}+\widehat{OLK}=\dfrac{118^0}{2}=59^0\)

=>góc KOL=180-59=121 độ

c: Xét ΔIKL có

KDlà phân giác

LE là phân giác

KD cắt LE tại O

Do đó: O là tâm đường tròn nội tiếp

=>IO là phân giác của góc KIL

=>góc KIO=62/2=31 độ

a: Xét ΔABC có 

I là trung điểm của AB

K là trung điểm của AC

Do đó: IK là đường trung bình của ΔBAC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)

hay BIKC là hình thang

b: \(IK=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

27 tháng 2 2022

vẽ hộ t cái hình dc ko:>

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

31 tháng 10 2021

a: Xét tứ giác AMDN có 

AM//DN

AN//DM

Do đó: AMDN là hình bình hành

=>Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường

hay A và D đối xứng nhau qua O

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2

5 tháng 5 2021

a, Xét tg ABE và tg AHE

có A1 = A2 [ do AE là pg  góc BAH [ GT ]

AE là cạnh chung

=>  Tg ABE = tg AHE [ cạnh huyền - góc nhọn]

b, Ta có tg ABC vuông tại B [ GT]

=>  BAC + ACB = 90 độ [ Tc tgv ]

hay 60 độ + 

 

 

18 tháng 9 2019

Bài 1:

  B D A H C E

Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)

Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)

Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)

\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)

Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).

Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)

Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).

2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)

Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)

Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)

Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)

P/S : Hình bài 1 chỉ mang tính chất minh họa nhé

19 tháng 9 2019

Theo yêu cầu vẽ hình của bạn Hyouka :)

2. 

B A C H D TH: ^B > ^C        B A C H D TH: ^B < ^C