K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

Đặt : \(A=\frac{2018^{13}+1}{2018^{14}+1}\)\(B=\frac{2018^{2012}+1}{2018^{2013}+1}\)

Ta có : 

\(2018A=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)

\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}=\frac{2018^{2014}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}=1+\frac{2017}{2018^{14}+1}\)

\(2018B=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)

\(2018B=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)

Vì 201814 + 1 >  201813 + 1 nên \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)

\(\Rightarrow1+\frac{2017}{2018^{14}+1}< 1+\frac{2017}{2018^{13}+1}\)Hay : A < B 

Vậy A < B 

8 tháng 6 2018

Đặt \(A=\frac{2018^{13}+1}{2018^{14}+1}\)và \(B=\frac{2018^{12}+1}{2018^{13}+1}\)

Ta có : 

\(2018A=\frac{\left(2018^{13}+1\right)\times2018}{2018^{14}+1}\)                                                         \(2018B=\frac{\left(2018^{12}+1\right)\times2018}{2018^{13}+1}\)

\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}\)                                                                      \(2018B=\frac{2018^{13}+2018}{2018^{13}+1}\)

\(2018A=\frac{2018^{14}+1+2017}{2018^{14}+1}\)                                                                \(2018B=\frac{2018^{13}+1+2017}{2018^{13}+1}\)

\(2018A=1+\frac{2017}{2018^{14}+1}\)                                                                        \(2018B=1+\frac{2017}{2018^{13}+1}\)

Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)

\(\Rightarrow2018A< 2018B\)

\(\Rightarrow A< B\)

Vậy : \(\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)