Cho hình vuông ABCD Trên cạnh DC lấy điểm E trên tia đối của tia BC lấy điểm F sao cho BF = DE
a, Chứng minh rằng tam giác AEF cuông cân
b , Gọi I là trung điểm của EF Chưng minh rằng I thuộc BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ADE vuông tại D và \(\Delta\)ABF vuông tại B có:
DE=BF ( giả thiết)
AD=AB( ABCD là hình vuông)
suy ra: \(\Delta\)ADE=\(\Delta\)ABF ( cgv-cgv)
=>AE=AF( 2 cạnh tương ứng )
=> \(\Delta\)AEF cân tại A (1)
\(\Delta\)ADE=\(\Delta\)ABF(cmt)
=> góc AED= góc AFB mà:
góc FAB+ góc AFB=90o
=>góc AED+ góc AFB=90o
mà góc BAE= góc AED ( AB//CD và 2 góc đó là 2 góc so le trong)
nên: góc BAE+góc AFB=90o
=> góc EAF= 90o(2)
từ (1) và (2) suy ra:
\(\Delta\)AEF vuông cân tại A
b)gọi H là giao điểm của AB và EF
ta có:
AB//DC ( ABCD là hình vuông)
=>góc BHI= góc DEI (so le trong)
và góc HBI= góc EDI( so le trong)
mà góc BHI và góc HBI nằm trong \(\Delta\)HBI
góc DEI và góc EDI nằm trong \(\Delta\)EDI nên:
góc HIB= góc DIE
mà I thuộc EF hay EI và FI là 2 tia đối nhau:
=> góc HIB đối đỉnh với góc DEI
=> BI và EI là 2 tia đối nhau
=>I thuộc BD
a, Xét 2 tam giác vuông ΔADE và ΔABF có:
AD = AB (ABCD là hình vuông); DE = BF (gt)
⇒ ΔADE = ΔABF (2 cạnh góc vuông)
⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^
mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o
⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o
⇒ ˆEAFEAF^ = 90o90o (2)
Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)
b, ABCD là hình vuông ⇒ BA = BC và DA = DC
⇒ BD là đường trung trực của AC (3)
ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền
⇒ AI = 1212EF
ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = 1212EF
⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)
Từ (3) và (4) suy ra: I thuộc BD (đpcm)
d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường
⇒ AEKF là hình bình hành
mà AE = AF và ˆEAFEAF^ = 90o90o
⇒ AEKF là hình vuông (đpcm)
a) DDAE = DBAF (c.g.c)
⇒ D A E ^ = B A F ^ và AE = AF
Mà E A D ^ + E A B ^ = 90 0 = > E A B ^ + B A F ^ = 90 0
Þ DAEF vuông cân tại A.
b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);
Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.
c) Do K đối xứng với A qua I nên I là trung điểm của AK.
Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.
Vậy AFKE là hình vuông.