K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)

b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep

c, tt

d, cx r

14 tháng 12 2018

a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)

\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)

\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)

12 tháng 9 2018

d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)

Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)

Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)

\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)

Đến đây bạn có thể giải ra tìm x đc

26 tháng 12 2020

a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2

b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

Phần c nản quá.

25 tháng 12 2020

a) 2x(x + y) - y(y + 2x) 

= 2x2 + 2xy - y2 - 2xy

= 2x2 - y2

b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)

\(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)