Cho A=1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2. Chứng minh A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{49.50}\)
\(\Rightarrow A<1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A<1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow A<1+\frac{49}{50}\)
\(\Rightarrow A<\frac{99}{50}\)
Vì \(\frac{99}{50}<2=\frac{100}{50}\Rightarrow A<2\) ĐPCM
Ta có:
\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
Do đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(\Rightarrow A<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)
=>A<2(đpcm)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=1+B\)( Gọi biểu thức trong ngoặc là B)
Ta xét B
B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
B<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
B<\(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{49}-\frac{1}{50}\)
B<\(1-\frac{1}{50}<1\)
Vậy B<1
=>A=1+B < 1+1=2
Vậy A<2
Ta có :
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......................+\dfrac{1}{50^2}\)
Ta thấy :
\(\dfrac{1}{1^2}=1\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
............................
\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....................+\dfrac{1}{49.50}\)
\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< 1+1-\dfrac{1}{50}\)
\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)
\(\Rightarrow A< 2\rightarrowđpcm\)
Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\left(\frac{1}{1}-\frac{1}{50}\right)\)
\(=1+\frac{49}{50}\)
Mà 1+49/50<2 nên A<1+49/50<2
Vậy A<2
Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
Vậy A < 2
A = 1/2.2 + 1/3.3 + ......+ 1/50.50
A < 1/1.2 + 1/2.3 +......+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1 (đpcm)
*****k nha
Ta có: A=1/2^2+1/3^2+1/4^2+...+1/50^2<1
=> A<1/1.2+1/2.3+1/3.4+........+1/50.51
=>A< ( 1/1+ -1/2+1/2+ -1/3+1/3+ -1/4+1/4+ -1/5+1/5+.....+1/50+ -1/51)
=> A<1/1+ -1/51
=>A<51/51+ -1/51 =50/51<1
\(Cm:\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)< 2
Ta có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1< 2\)
=> A < 2
tk nha mn
Ta có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\) \(=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\) \(=1+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\right)< 1+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(\Rightarrow A< 1+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(\Rightarrow A< 1+\left(\frac{1}{2}-\frac{1}{51}\right)=1+\frac{49}{102}< 1+1=2\) (Đpcm)