Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: \(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\ge\frac{1}{3}\)\(\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)
dấu = xảy ra <=>a=b=c>0
Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)
^_^
Từ ab + bc + ac =1
=> ab + bc + ac + a2 = 1 + a2
=> 1 + a2 = (a+b)(a+c) (1)
Tương tự: 1 + b2 = (a+b)(b+c) (2)
1 + c2 = (a+c)(b+c) (3)
Thay (1) (2) (3) vào P
P= a\(\sqrt{\left(b+c\right)^2}\)+ b\(\sqrt{\left(a+c\right)^2}\)+ c\(\sqrt{\left(a+b\right)^2}\)
= a|b+c| + b|a+c| + c|a+b|
= a(b+c) + b(a+c) + c(a+b) (do a,b,c >0)
= ab + ac +ab + bc +ac +bc
= 2(ab + ac + bc)
=2
Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.
Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)
Do đó ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)
\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)
\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)
Do đó ta được:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)
Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
<=> \(\left(1+b\right)^2\left(1+c\right)^2+\left(1+a\right)^2\left(1+b\right)^2+\left(1+a\right)\left(1+c\right)^2\)
\(+2\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2\)
<=> \(a^2+b^2+c^2\ge3\)đúng vì \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
Nhầm, bỏ bớt 1 cái 1/3 đi
tích đi rồi Pain làm