K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

(Hình tự vẽ nhé)

a) xét tam giác FHB và tam giác EHC ta có

                        góc FHB = góc EHC ( đối đỉnh)

                      góc BEA= góc CFA = 90 độ

Dó đó tam giác FHB đồng dạng tam giác EHC (gg)

=> HF/EH = HB/HC hay HE.HB=HF.HC

b) ta có tam giác AFC đồng dạng AEB (gg) (A chung; 2 góc vuông)

=>AF/AE=AC/AB hay AF/AB=AE/AC

Xét tam giác AEF và tam giác ABC có

góc A chung

AF/AB=AE/AC

Do đó tam gioác AEF đồng dạng ABC (gg)

=> AEF=ABC

29 tháng 5 2018

câu d) ai giúp vs

18 tháng 7 2016

xét tam giác  abe va acf

co ;goc f=goc e =90

goc a chung 

 2 tam giuac dong dang 

 

29 tháng 4 2019

A B C D H E F

a) Xét ΔABE và ΔACE có:

\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)

\(\widehat{CAB}:chung\)

=> ΔABE∼ΔACE (g.g)

b) Xét ΔFHB và ΔEHC có:

\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)

\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)

=> ΔFHB∼ΔEHC (g.g)

=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)

c) Theo câu a) ta có: ΔABE∼ΔACF

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét ΔBAC và ΔEAF có:

\(\widehat{BAC}:chung\)

\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)

=> ΔBAC∼ΔEAF (c.g.c)

=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)

29 tháng 4 2016
T.giac vuong Abe ~ t.giac vuông afc ( a chung) b/ t.giac vuông hfb ~ t.giac vuông hec ( h1= h2 do đối đỉnh) => he.hb=hc.hf C/ afe ~ abc => AF/AE=AC/AB ( 1) A CHUNG => T.GIAC afe ~ t.giac acb => góc aef = góc abc D/ t.giac bec ~ adc ( tự cm) => AC/BC=DC/EC AC/BC = DC/EC ,góc C CHUNG => t giac CED ~ t.giac CBA mà t.giac cba ~ vs t giac FEA => t.giac FEA ~ VS T.giac CED => góc aef = ced mà aef + feb = 90* Ced + deb =90* Nên goc feb = góc deb => BE LÀ p.g góc DEF :)) lm biếng viết hoa pn thông cảm đọc nha
15 tháng 4 2017

Nguyễn Trọng Phúc cho mình hỏi tại sao AC/BC = DC/EC?

a: Xet ΔAEB và ΔAFC có

góc AEB=góc AFC

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

b: Xét ΔAEF và ΔABC co

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

19 tháng 4

còn câu C nữa nè 

bạn xem bạn có giải được ko

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh