K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

P=a³+b³+c³-ab-bc-ca

Do 0≤a, b, c≤1 nên a³≤a²≤a, b³≤b²≤b, c³≤c²≤c

P≤a²+b²+c²-ab-bc-ca

(a+b+c).P≤(a+b+c)(a²+b²+c²-ab-bc-ca)

=a³+b³+c³-3abc

≤a+b+c

→ P≤1

23 tháng 6 2015

a < b.c 

tớ làm đầu nha !

lai ( **** ) tớ 1 cái đi phan quỳnh như !

thanks trước !

5 tháng 1 2018

vì a,b,c\(\in\left[0;1\right]\)

=>(1)\(b^2\le b;c^3\le c\Rightarrow a+b^2+c^3\le a+b+c\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)

mà \(a,b,c\in\left[0;1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

=>\(abc+a+b+c-ab-bc-ca-1\le0\)

=>\(a+b+c-ab-bc-ca\le1-abc\le1\left(vi:abc\ge0\right)\) (2)

Từ (1) và (2) => ĐPCM

Dấu = xảy ra <=>2 số = 0  và 1 số = 1 hoặc 2 số = 1 và 1 số = 0

^_^

4 tháng 3 2020

Cau 1

\(\hept{\begin{cases}ab=24\\a+b=-10\end{cases}\Leftrightarrow\hept{\begin{cases}a=-10-b\\b\left(-10-b\right)=24\end{cases}}}\)

<=> \(\hept{\begin{cases}a=-10-b\\-b^2-10b-24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}a=-10-b\\b=-4\end{cases}}\\\hept{\begin{cases}a=-10-b\\b=-6\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\hept{\begin{cases}a=-6\\b=-4\end{cases}}\\\hept{\begin{cases}a=-4\\b=-6\end{cases}}\end{cases}}}\)

Vay {a;b} ={-4;-6}, {-6;-4}

4 tháng 3 2020

Cau 2

Ap dung tinh chat sau

\(\hept{\begin{cases}a⋮m\\b⋮m\end{cases}\Rightarrow\left(a-b\right)⋮m}\)

nen \(\hept{\begin{cases}a+b+c⋮m\\a⋮m\\b⋮m\end{cases}\Rightarrow\left(a+b+c-a-b\right)⋮m\Leftrightarrow c⋮m}\)

3 tháng 8 2017

Sửa lại đề \(CM\)\(\frac{a}{c}=\frac{\left(a+20112b\right)^2}{\left(b+2012c\right)^2}\)

Có \(a,b,c\in R;a,b,c\ne0\)và \(b^2=ac\)

Ta có \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Lại có \(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\Rightarrow\frac{a}{b}=\frac{a+2012b}{b+2012c}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\Rightarrow\frac{a^2}{ac}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

Hay \(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

3 tháng 8 2017

\(\frac{\left(a+2012.b\right)^2}{\left(b+2012.c\right)^2}=\frac{a^2+2.2012.a.b+2012^2.b^2}{b^2+2.2012.b.c+2012^2.c^2}=\frac{a^2+2.2012.a.b+2012^2.a.c}{a.c+2.2012.b.c+2012^2.c^2}=\)

\(=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Xem lại đề bài