\(\sqrt{x+3}\) X^4 = 2x^4 - 2016x + 2016 giai phuong trinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
ĐKXĐ : \(-4\le x\le4\)
TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)
\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)
\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)
\(\Leftrightarrow x=0\)HOẶC \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)
\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)
\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)
\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)
\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)
\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)
\(\Leftrightarrow25x^2+64+80x=64-16x\)
\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)
\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )
VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)
P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>
\(ĐK:x\ge2\)
\(x^2-5x+4=2\sqrt{2x-4}\)
<=>\(x^2-5x+4=2\sqrt{2\left(x-2\right)}\)
<=>\(x^2-5x+4+x-2+2=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)
<=>\(x^2-4x+4=\left(\sqrt{x-2}+2\right)^2\)
<=>\(\left(x-2\right)^2=\left(\sqrt{x-2}+2\right)^2\)
<=> \(\left(x-2-\sqrt{x-2}-2\right)\left(x-2+\sqrt{x-2}+2\right)=0\)
<=>\(\left(x-\sqrt{x-2}-4\right)\left(x+\sqrt{x-2}\right)=0\)
Xét \(x-\sqrt{x-2}-4=0\)
<=>\(x^2-8x+16=x-2\)
<=>\(x^2-9x+18=0\)
=> x=6;3(nhận)
Xet1\(x+\sqrt{x-2}=0\)
Do x\(\ge2\)=> pt vô nghiệm
Vậy ...
\(\dfrac{x+2}{2016}+\dfrac{x+3}{2015}+\dfrac{x+4}{2014}+\dfrac{x+2036}{6}=0\)
<=>\(\dfrac{x+2}{2016}+1+\dfrac{x+3}{2015}+1+\dfrac{x+4}{2014}+1+\dfrac{x+2036}{6}-3=0\)
<=>\(\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}+\dfrac{x+2018}{2014}+\dfrac{x+2018}{6}=0\)
<=>\(\left(x+2018\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{6}\right)=0\)
vì 1/2016+1/2015+1/2014+1/6 khác 0
=>x+2018=0<=>x=-2018
vậy...................
chúc bạn học tốt ^ ^
\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)
Phương trình tương đương:
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)
TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)
TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)
TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)
Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)