Cho (O) và dây AB.Gọi M là điểm chính giữa cung nhỏ AB và C là điểm bất kì trên AB, MC cắt đường tròn tại D.
a) CM: MA^2=MC.MD
b) Vẽ(O') ngoại tiếp tam giác ACD.CM: AM là tiếp tuyến (O')
c) Vẽ đường kính MN của (O) .CM: A,O',N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác $MBC$ và $MDB$ có:
$\widehat{M}$ chung
$\widehat{MBC}=\widehat{MDB}$ (do là góc nt chắn 2 cung MB và MA bằng nhau)
$\Rightarrow \triangle MBC\sim \triangle MDB$ (g.g)
$\Rightarrow \frac{MB}{MD}=\frac{MC}{MB}\Rightarrow MB^2=MC.MD$
Mà $MB=MA$ nên $MA^2=MC.MD$ (đpcm)
b) Đã chứng minh ở phần a.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
Mình chỉ làm được câu a nhé:
Hai tam giác AMC và DMA đồng dạng với nhau (g.g)
Vì góc ADM = góc MAC = 1/4 sđ cung AB ; chung góc AMD
=> AM/DM = MC/MA <=> MA^2 = MC.MD
a) Hai tam giác AMC và DMA đồng dạng với nhau (g.g)
Vì góc ADM = góc MAC = 1/4 sđ cung AB ; chung góc AMD
=> AM/DM = MC/MA <=> MA^2 = MC.MD