K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

hoc penta chua

20 tháng 5 2018

Ta có: \(x^2-xy+y^2-x-y=0\) 

\(\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\) 

\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2-\left(y^2+2y+1\right)+4y^2-4y=0\) 

\(\Leftrightarrow4x^2-4x\left(y+1\right)+\left(y+1\right)^2+3y^2-6y-1=0\) 

\(\Leftrightarrow\left(2x-y-1\right)^2+3\left(y+1\right)^2=4\)  

Do \(x,y\in Z\Rightarrow\left(2x-y-1\right)^2;\left(y+1\right)^2\ge0\) 

\(\Rightarrow3\left(y+1\right)^2\le4\)

\(\Rightarrow\left(y+1\right)^2\le\frac{3}{4}\)  

Sau đó bạn xét từng giá trị nhé

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

5 tháng 1 2020

Tìm cặp số nguyên (x;y) thỏa mãn x+y=xy

\(x+y=xy\)

\(\Leftrightarrow x+y-xy=0\)

\(\Leftrightarrow x-xy+y-1=-1\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)

\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)

Từ trên ta xét 2 TH : 1 là 1 - y = 1 và x - 1 = -1 | 2 là 1 - y = -1 và x - 1 = 1

TH1:\(x-1=-1\) 

\(\Rightarrow x=0\)

     \(1-y=1\)

\(\Rightarrow y=0\)

TH2: \(x-1=1\)

\(\Rightarrow x=2\)

       \(1-y=1\)

\(\Rightarrow y=2\)

=> 2 cặp số nguyên (x;y) thỏa mãn x+y=xy là (0;0) và (2;2)

15 tháng 2 2020

( x+y )2 = xy( xy + 1 ) ⟺ ( x+y )2 = xy( xy + 1 ).

Lại có ( | xy |, | xy+1 | ) = 1( | xy | ,| xy+1 | ) = 1 nên xét:
Nếu xy ≥ 0 xy ≥ 0 thì {xy = a2xy + 1 = b2 {xy = a2xy + 1 = b2
Với a,ba,b nguyên dương. Từ trên ta được a2 = b2 − 1 ⟺ (b−a)(b+a )= 1a2 = b2 − 1 ⟺ (b−a)(b+a) = 1 => a = 0, b = 1

a = 0, b = 1. Từ đó x = y = 0 
Nếu xy ≤ −1xy ≤ −1 (Không thể −1≤ xy ≤ 0−1 ≤ xy ≤ 0 ) được.
Tương tự, đặt {xy = −m2xy + 1 = −n2{xy = −m2xy + 1 = −n2
Trong đó m,nm,n nguyên dương. Tương tự như trên tìm được m,nm,n và tìm được x,yx,y