Tìm GTNN của biểu thức :
P=\(\frac{X+3\sqrt{X}+1}{X+4\sqrt{X-1}+2}\) ĐK: X\(\ge\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0
Ta có : \(\left\{{}\begin{matrix}x\ge1\\y\ge2\\z\ge3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge0\\\sqrt{y-2}\ge0\\\sqrt{z-3}\ge0\end{matrix}\right.\Rightarrow\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}\ge0\)
Đặt \(\sqrt{x-1}=a;\sqrt{y-2}=b;\sqrt{z-3}=c\)
\(\Rightarrow A=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)
\(\sum\frac{a}{a^2+1}=\sum\left(a-\frac{a^3}{a^2+1}\right)\ge\sum\left(a-\frac{a}{2}\right)=\frac{a+b+c}{2}\)
\(\Rightarrow A\ge\frac{\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}}{2}=0\)
Vậy \(MIN_A=0\) khi \(x=1;y=2;z=3\)
\(A=\frac{1.\sqrt{x-1}}{x}+\frac{1}{\sqrt{2}}.\frac{\sqrt{2}.\sqrt{y-2}}{y}+\frac{1}{\sqrt{3}}.\frac{\sqrt{3}.\sqrt{z-3}}{z}\)
\(A\ge\frac{1+x-1}{2x}+\frac{1}{\sqrt{2}}\left(\frac{2+y-2}{2y}\right)+\frac{1}{\sqrt{3}}\left(\frac{3+z-3}{2z}\right)=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)
\(\Rightarrow A_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé