Cho tam giác ABC biết A:B:C=3:5:7.So sánh các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Các đỉnh : A, B, C
Các cạnh: AB, BC, AC
Các góc: \(\widehat A,\,\widehat B,\,\widehat C\)
2) AB =3 cm, AC = 3 cm, BC = 3 cm nên các cạnh của tam giác ABC bằng nhau
3) \(\widehat A = 60^0; \widehat B =60^0; \widehat C=60^0\) nên các góc của tam giác ABC bằng nhau và bằng 60o
Hướng dẫn:
a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N
CG cắt AB tại E
G là trọng tâm của ∆ABC
=> GA = AM
Mà GA = GG’ ( G là trung điểm của AG ‘)
GG’ = AM
Vì G là trọng tâm của ∆ABC => GB = BN
Mặt khác : GM = AG ( G là trọng tâm )
AG = GG’ (gt)
GM = GG’
M là trung điểm GG’
Do đó ∆GMC = ∆G’MB vì :
GM = MG’
MB = MC
=> BG' = CG
mà CG = CE (G là trọng tâm ∆ABC)
=> BG' = CE
Vậy mỗi cạnh của ∆BGG' bằng đường trung tuyến của ∆ABC
b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC
ta có: BM là đường trung tuyến ∆BGG'
mà M là trung điểm của BC nên BM = BC
Vì IG = BG (I là trung điểm BG)
GN = BG ( G là trọng tâm)
=> IG = GN
Do đó ∆IGG' = ∆NGA (cgc) => IG' = AN => IG' =
- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'
Vì GE = GC (G là trọng tâm ∆ABC)
=> GE = BG
mà K là trung điểm BG' => KG' = EG
Vì ∆GMC = ∆G'BM (chứng minh trên)
=> (lại góc sole trong)
=> CE // BG' => (đồng vị)
Do đó ∆AGE = ∆GG'K (cgc) => AE = GK
mà AE = AB nên GK = AB
Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó
Hướng dẫn làm bài:
a)So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC
BG cắt AC tại N
CG cắt AB tại E
G là trọng tâm của ∆ABC
=> GA=23AMGA=23AM
Mà GA = GG’ (G là trung điểm của AG’)
=> GG′=23AMGG′=23AM
Vì G là trọng tâm của ∆ABC => GB=23BNGB=23BN
Mặt khác :
M là trung điểm GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′GM=12AG(TT)AG=GG′(Gt)}=>GM=12GG′
Do đó ∆GMC=∆G’MB vì ⎧⎪⎨⎪⎩GM=MG′MB=MCˆGMC=ˆG′MB{GM=MG′MB=MCGMC^=G′MB^
=> BG′=CGCG=23CEBG′=CGCG=23CE (G là trọng tâm tam giác ABC)
=>BG′=23CE=>BG′=23CE
Vậy mỗi cạnh của ∆BGG’ bằng 2323 đường trung tuyến của ∆ABC
b)So sánh các đường trung tuyến của ∆BGG’ với cạnh ∆ABC.
-Ta có: BM là đường trung tuyến ∆BGG’
Mà M là trung điểm của BC nên BM=12BCBM=12BC
Vì IG=12BGIG=12BG (Vì I là trung điểm BG)
GN=12BGGN=12BG (G là trọng tâm)
=> IG = GN
Do đó ∆IGG’=∆NGA (c.g.c) => IG′=AN=>IG′=AC2IG′=AN=>IG′=AC2
-Gọi K là trung điểm BG => GK là trung điểm ∆BGG’
Vì GE=12GCGE=12GC (G là trọng tâm tam giác ABC)
BG' = GC (Chứng minh trên)
=>GE=12BG=>GE=12BG
Mà K là trung điểm BG’ =>KG’ = EG
Vì ∆GMC = ∆G’MB (chứng minh trên)
=> ˆGCM=ˆG′BMGCM^=G′BM^ (So le trong)
=>CE // BG’ => ˆAGE=ˆAG′BAGE^=AG′B^ (đồng vị)
Do đó ∆AGE = ∆GG’K (c.g.c) =>AE = GK
Mà AE=12AB⇒GK=12AB
Bài giải
a) Gọi M, N, E lần lượt là trung điểm của AB, BC, CA.
Vậy mỗi cạnh của ΔBGG' bằng 2/3 đường trung tuyến của ΔABC.
b) Gọi I, K lần lượt là trung điểm của BG và BG'.
Bài toán 2: Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.
Tam giác ABC cân tại A (gt). => Góc B = Góc C (Tính chất tam giác cân).
Ta có: Tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm (gt).
=> AB = AC = (16 - 4) : 2 = 6 (cm).
Xét tam giác ABC cân tại A:
Ta có: AB > BC (AB = 6 cm; BC = 4cm).
=> Góc C > Góc A.
Vậy trong tam giác ABC có Góc B = Góc C > Góc A.
Ta có: A:B:C =3:5:7
\(\Rightarrow\)A<B<C
\(\Rightarrow\)BC<AC<AB (Bất đẳng thức tam giác: Góc nhỏ nhất \(\Rightarrow\) Cạnh đối diện nhỏ nhất
Góc lớn nhất \(\Rightarrow\) Cạnh đối diện lớn nhất
Theo bài ra ta cs
\(A:B:C=3:5:7\Rightarrow\frac{A}{3}=\frac{B}{5}=\frac{C}{7}\)và \(A+B+C=180^0\)
ADTC dãy tỉ số bằng nhau
\(\frac{A}{3}=\frac{B}{5}=\frac{C}{7}=\frac{A+B+C}{3+5+7}=\frac{180}{15}=12\)
\(\Rightarrow\hept{\begin{cases}\frac{A}{3}=12\\\frac{B}{5}=12\\\frac{C}{7}=12\end{cases}\Rightarrow\hept{\begin{cases}A=36\\B=60\\C=84\end{cases}}}\)
=> A < B < C