cho S=\(\frac{3}{1\cdot4}\)+\(\frac{3}{4\cdot7}\)+\(\frac{3}{7\cdot10}\)+.....+\(\frac{3}{40\cdot43}\)+\(\frac{3}{43\cdot46}\).hãy chứng tỏ rằng S nhỏ hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(s=1-\frac{1}{46}< 1\)
Vậy S<1
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{43\cdot46}\)
\(S=1\left[\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{43\cdot46}\right]\)
\(S=1\left[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\right]\)
\(S=1\left[1-\frac{1}{46}\right]=1\cdot\frac{45}{46}=\frac{45}{46}< 1(đpcm)\)
Ta có :
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+..............+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...............+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{40.43}+\dfrac{1}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}=\dfrac{45}{46}\)
\(\dfrac{45}{46}< 1\)
=> \(S< 1\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
=>\(S=\frac{4}{9}-\frac{1}{5}\)
=>\(S=\frac{11}{45}\)
\(A=\frac{1}{1.4}+\frac{1}{2.7}+...+\frac{1}{67.70}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{67.70}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{70}\)
\(3A=1-\frac{1}{70}=\frac{69}{70}\)
\(A=\frac{69}{70}:3=\frac{23}{70}\)
vì \(\frac{23}{70}< 1\)
nên \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{67.70}< 1\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(=1.\frac{15}{16}=\frac{15}{16}\)
1/3.A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
=>A=\(\frac{99}{100}:\frac{1}{3}\)
=\(\frac{297}{100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(1-\frac{1}{100}\right)\)
\(A=3.\frac{99}{100}=\frac{297}{100}\)
Các bạn chọn đúng cho mình nhé!
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
#)Giải :
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)
\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)
\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)
#~Will~be~Pens~#
\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)
\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)
\(^{\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(1-\frac{1}{46}=\frac{45}{46}\)
Vì \(1-\frac{1}{46}< 1\)nên \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}< 1\)
Chúc bạn học tốt
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(S=1-\frac{1}{43}\)
\(S=\frac{42}{43}< 1\)