Cho đường tròn tâm O đường kính AB . Một điểm C khác A và B nằm trên đường tròn . Tiếp tuyến Cx của đường tròn tâm O cắt AB tại I . Phân giác của góc CIA cắt OC tại O' a) (O',O'C) tiếp xúc với O và tiếp xúc với AB b) Gọi D,E theo thứ tự là giao điểm thứ hai của Ca và CB với (O') C/m D,O',E thẳng hàng c) tìm vị trí của C sao cho đường tròn ngoại tiếp tam giác OCI tiếp xúc với AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ thấy A M B ^ = 90 0 hay E M F ^ = 90 0 tiếp tuyến CM,CA
=> OC ⊥ AM => O E M ^ = 90 0 Tương tự => O F M ^ = 90 0
Chứng minh được ∆CAO = ∆CMO => A O C ^ = M O C ^
=> OC là tia phân giác của A M O ^
Tương tự OD là tia phân giác của B O M ^ suy ra OC ⊥ OD <=> C O D ^
b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao
=> O E M ^ = 90 0 chứng minh tương tự O F M ^ = 90 0
Vậy MEOF là hình chữ nhật
c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.