Giải phương trình
\(\frac{3+x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: \(\sqrt[3]{x^3+5x^2}-1=\sqrt{\frac{5x^2-2}{6}}\)
\(\Rightarrow\sqrt[3]{x^3+5x^2}=1+\sqrt{\frac{5x^2-2}{6}}\)
\(Đkxđ:x^2\ge\frac{2}{5}\)
Đặt: \(\hept{\begin{cases}\sqrt[3]{x^3+5x^2}=u\\\sqrt{\frac{5x^2-2}{6}}=v\ge0\end{cases}}\)
Ta được: \(\hept{\begin{cases}x^3+5x^2=u^3\\5x^2-2=6v^2\Rightarrow x^3+2=\left(v-1\right)^3+2\Leftrightarrow x=v-1\\u=1+v\end{cases}}\)
Từ trên ta giải được nghiệm: \(x=-6+2\sqrt{7}\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
\(ĐKXĐ:x\le3\)
\(\Leftrightarrow\frac{5x+2\sqrt{3-x}-x}{4}>\frac{6-4+3\sqrt{3-x}}{6}\Leftrightarrow\frac{6x+3\sqrt{3-x}}{6}-\frac{2+3\sqrt{3-x}}{6}>0\Leftrightarrow3x-1>0\Leftrightarrow x>\frac{1}{3}\)
Vậy \(\frac{1}{3}