K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

11 tháng 11 2017

Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)

\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)

Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)

Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)

Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)

Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)

Vậy GTNN  của A là 4 khi và chỉ khi \(-7\le x\le3\)