CMRNếu p và p^2 +2 là 2 số nguyên tố thì p^3 +2 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*p = 2 thì p\(^2\)+2 = 6(loại vì 6 không phải là số nghuyên tố)
* p = 3 thì p\(^2\)+2 = 11(chọn vì 11 là số nghuyên tố)
\(\Rightarrow\) p\(^3\) + 2 = 3\(^3\)+2 = 29 (là số nghuyên tố)
* p >3
Vì p là số nguyên tố \(\Rightarrow\)p ko chia hết cho 3 (1)
p thuộc Z \(\Rightarrow p^2\)là số chính phương (2)
từ (1),(2) \(\Rightarrow p^2\) chia 3 dư 1
\(\Rightarrow p^2\)+2 chia hết cho 3 (3)
Mặt khác p>3
\(\Rightarrow p^2>9\)
\(\Rightarrow p^2\)+2 > 11 (4)
Từ (3),(4) \(\Rightarrow p^2\)+2 ko là số nguyên tố (trái với đề bài)
Answer:
Mình nghĩ đề là \(p^3+2\) mới đúng chứ nhỉ?
Ta nhận xét được:
Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)
\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)
Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)
\(\Rightarrow p^2+2\) là hợp số
\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)
\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố
Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.
TH1: p=3k+1
=>p+2=3k+3(loại)
=>p=3k+2 và p là số lẻ
p+1=3k+3=3(k+1) chia hết cho 3
p là số lẻ
=>p+1 chia hết cho 2
=>p+1 chia hết cho 6
Nếu p không chia hết cho 3 => p \(\ge2\)
Ta ó : Với mọi số chính phương không chia hết cho 3 thì chỉ chi cho 3 dư 1
Do đó \(p^2+2\equiv0\left(mod3\right)\)
Suy ra , để p2 + 2 là số nguyên tố thì \(p^2+1=3\) => p = 1 (vô lý)
Vậy , để thỏa mãn đề bài thì p phải chia hết cho 3 đồng thời là số nguyên tố
tức p = 3 thì thõa mãn đề bài